Атаки на современные алгоритмы и модели машинного обучения и искусственного интеллекта отличаются большим разнообразием и сложностью предсказания результатов.
Работа разметчика данных предполагает долгий и однообразный труд, действия строго по инструкции, и поэтому тяжело воспринимается большинством людей. Однако люди с расстройствами аутистического спектра в силу своей специфики становятся лучшими разметчиками.
Искусственный интеллект сегодня – революционное средство для решения множества задач или хайп, вводящий в заблуждение относительно практического применения этих технологий?
Ошибка в темпе прокатки стали может привести к поломке оборудования, поэтому обычно оператор стана выставляет темп с небольшим запасом – но правильно ли он его высчитает? Важно оцифровать этот процесс и снизить влияние человеческого фактора.
Ильдар Хасанов, исполнительный директор BRAINPHONE, – о разработке сервиса, позволяющего по голосу выявлять людей с болезнью Паркинсона, и создании массового и доступного инструмента диагностики этого заболевания.
Андрей Зима, директор департамента развития решений искусственного интеллекта «Ростелеком», – о запуске решения, помогающего определять наиболее перспективные сегменты клиентов и повышать качество работы с ними.
Владимир Горохов, директор по развитию «Русагро Тех» и Максим Андрианов, директор по разработке и внедрению ПО «Инфосистемы Джет», — о создании в «Русагро» системы планирования полевых работ, позволяющей добиваться оптимальных результатов.
Ирина Фадеева, управляющий директор отдела развития и продаж продуктов глобальных рынков розничным клиентам «Сбера», – о формировании персонализированных коммуникаций с учетом психометрии клиентов.
Светлана Потапова, руководитель кластера «Искусственный интеллект» «Северстали», – о создании решения на основе моделей машинного обучения, позволившего оптимизировать работу стана 2000 Череповецкого металлургического комбината.
Дмитрий Берестнев, Chief Data Scientist HiFi-стриминга «Звук», – о реализации проекта по автоматическому извлечению и анализу текстов песен, что позволило решить задачи фильтрации контента и оптимизировать выдачи рекомендаций пользователям.
Андрей Голов, руководитель Центра искусственного интеллекта «Северстали», – об использовании на предприятии физически информированного машинного обучения и его роли в повышении эффективности компании.
Исследователи сравнили модели, предсказывающие, насколько высокую оценку напитку поставят дегустаторы. Лучшие результаты — у модели, обученной методом градиентного бустинга.
Исследователи разработали целый набор параметров, используемых при обучении и ориентированных на распознавание и учет экономических стимулов для человека.
Павел Николаев, начальник управления технологий машинного обучения Альфа-Банка, – о запуске экосистемы для разработки и внедрения моделей машинного обучения, с помощью которой удалось радикально ускорить процессы создания и запуска моделей.
Качество данных становится востребованной темой в российских компаниях. Эксперт направления Data Governance «КОРУС Консалтинг» Мария Русина рассказывает о том, как добиться качественных данных.