онтологии

Дата-центричная архитектура — гибкая работа с данными

В основе классической ИТ-архитектуры лежат приложения, каждое со своей базой данных, что обычно приводит к дублированию информации в бизнес-объектах. Ядро дата-центричной архитектуры – данные, доступные всем потребителям через единую точку, роль которой в сложных системах исполняет логическая витрина основанная на модели консолидированных данных. В чем преимущества использования онтологий для построения такой модели и как построить онтологическую модель, обеспечив гибкость и целостность?

Проектирование и моделирование телекоммуникационных систем

Телекоммуникационные системы постоянно усложняются как с точки зрения функциональности, так и с точки зрения реализуемых бизнес-процессов, что требует наличия единой информационной модели предметной области и обеспечения взаимодействия различных информационных систем. Традиционные подходы к проектированию, ориентированные на построение систем, решающих частные задачи, не применимы. Требуется онтологическая модель телекоммуникационной сети, которая может использоваться как операторами связи для решения поисковых, аналитических и прогнозных задач, так и архитекторами при проектировании и модернизации телекоммуникационных систем.

Архитектура на основе потоков событий

Архитектура на основе событий может использоваться для построения сложных бизнес-моделей в медицинской информатике — построение событийных моделей хорошо фрагментируется на выделение событий и их обработку, не затрагивая уже имеющиеся обработчики. Архитектура обладает хорошей адаптивностью и может применяться не только в медицине.

Проверка истинности информации

Эффективность любой корпоративной информационной системы определяется качеством и достоверностью содержащихся в ней данных – именно вера пользователя в истинность сведений делает систему пригодной для использования. Но на практике возможно появление в системе ложных данных. Для современных корпоративных информационных систем необходимы инструменты проверки истинности вводимых данных.

Управление знаниями: тенденции

Процесс цифровизации может потребовать достаточно продолжительного времени для преобразования модели управления организацией, включая управление всей доступной информацией. Успех прохождения этого периода во многом зависит от учета тенденций в управлении знаниями, затрагивающих как новые технологии, так и способы их внедрения в реальные бизнес-процессы компании.

Онтологии: от текста к фактам

В файловых архивах организаций часто скрыты огромные объемы полезной информации. Для превращения текста из набора слов в массив фактов, на основе которых можно автоматизировать получение логических выводов, нельзя обойтись без онтологий, используемых в комбинации с другими методами, для уверенного автоматизированного распознавания смысла текстов.

Единая точка доступа к данным предприятия

Современные онтологические технологии, графовые базы данных, машины логического вывода и другие инструменты дают возможность в рамках разумных бюджетов создавать логические витрины данных, позволяющие предприятиям консолидировать все имеющиеся у них данные. Проекты создания автоматизированных систем, построенных по архитектуре логической витрины данных, сегодня можно выполнить на базе ПО с открытым исходным кодом, а также продуктов, внесенных в Реестр отечественного ПО.

Управление данными на основе графов знаний

Компании, способные с помощью графов знаний управлять сложностью своих информационных систем, получат преимущества в условиях цифровой экономики.
29 ноября 2018 года эта тема подробно обсуждается на конференции "Технологии управления данными 2018"

База знаний научного эксперимента

Как формализовать модель жизненного цикла эксперимента и автоматизировать процесс получения знаний о нем? Необходимо иметь единое онтологическое хранилище, в котором метаданные по научному эксперименту объединены в семантически связную структуру.

Аналитика двойного назначения

Программное обеспечение компании Palantir активно используется спецслужбами, однако оно открыто и для применения в других областях.

Проблемы автоматизации аналитики: как избежать распространенных ошибок

Для автоматизации аналитики часто применяют no-code /low-code ETL-инструменты. Однако у этих инструментов есть недостаки. Правильный ли это выбор?