Системы игры в го обычно полагаются на алгоритм поискового дерева, позволяющий находить нужные значения в множестве. В созданной исследователями Google программе наряду с этим используются глубокие нейронные сети, которые имитируют ход мысли опытных игроков и постоянно совершенствуются, играя против себя самих.
Система AlphaGo, в которой используются расширенная система поиска и сложная нейронная сеть, может предсказать поведение человека в 57% случаев.
Исследователи программы продолжают развивать свою систему; в частности, планируется обучить ее самостоятельно редактировать коллажи, добавляя дополнительные элементы, чтобы сделать изображение еще комичнее.
Компания Facebook оснастит свою вычислительную систему нового поколения платформой ускоренных вычислений Nvidia Tesla, которая позволит запускать широкий спектр приложений машинного обучения.
В Google утверждают, что проект еще весьма далек от практических применений. В 2013 исследователи в научном докладе сообщали, что созданная ими программная система сама научилась играть в ряд классических игр для Atari лучше людей, просто «наблюдая» за происходящим на экране пока в них играли другие.
Каждый, кто впервые знакомится с нейронными сетями, задает себе вопрос: что такое нейроинформатика? Ответить на него можно по-разному. Можно сказать, что нейроинформатика это способ решения всевозможных задач с помощью искусственных нейронных сетей, реализованных на компьютере. Такой ответ, объясняющий только внутреннюю сущность нейроинформатики, почти никого не удовлетворяет, даже если подробно рассказывать о нейронных сетях, задачах и способах их решения. На самом деле требуется еще определить место нейроинформатики среди других способов решения задач и разобраться, в чем же истинные преимущества нейронных сетей, если таковые существуют?
Теория нейронных сетей привлекает сегодня внимание многих исследователей. С одной стороны, интерес к нейросетевым моделям вызван желанием понять принципы работы нервной системы, с другой стороны, с помощью таких моделей ученые рассчитывают смоделировать поразительные по своей эффективности процессы обработки информации, свойственные живым существам.
Интеллектуальные системы на основе искусственных нейронных сетей позволяют с успехом решать проблемы распознавания образов, выполнения прогнозов, оптимизации, ассоциативной памяти и управления. Известны и иные, более традиционные подходы к решению этих проблем, однако они не обладают необходимой гибкостью за пределами ограниченных условий. ИНС дают многообещающие альтернативные решения, и многие приложения выигрывают от их использования.
Острая боль в груди. Скорая помощь доставляет больного в приемный покой, где дежурный врач должен поставить диагноз и определить, действительно ли это инфаркт миокарда. Опыт показывает, что доля пациентов, перенесших инфаркт среди поступивших с аналогичными симптомами, невеликa. Точных методов диагностики, тем не менее, до сих пор нет. Электрокардиограмма иногда не содержит явных признаков недуга. А сколько всего параметров состояния больного могут так или иначе помочь поcтавить в данном случае правильный диагноз? Более сорока. Может ли врач в приемном покое быстро проанализировать все эти показатели вместе с взаимосвязями, чтобы принять решение о направлении больного в кардиологическое отделение? В какой-то мере эту задачу помогают решать нейросетевые технологии. Нейронные сети для задач диагностики Конкретные системы Возможности применения нейросетей Борьба с раком Нейросистемы, генетика и молекулы Нейросети шагают по планете Вместо заключения Острая боль в груди. Скорая помощь доставляет
KDD — обнаружение знаний в базах данных — реальный способ повышения эффективности работы. Вопрос не в том, нужны ли такие технологии, а в том, как их применить в каждом конкретном случае.