Уже более трех лет много говорят и пишут о Больших Данных (Big Data) в сочетании со словом «проблема», усиливая таинственность этой темы. За это время «проблема» оказалась в фокусе внимания подавляющего большинства крупных производителей, в расчете на обнаружение ее решения создается множество стартапов, а все ведущие отраслевые аналитики трубят о том, насколько сейчас важно умение работать с большими объемами данных для обеспечения конкурентоспособности. Подобная, не слишком аргументированная, массовость провоцирует инакомыслие, и можно встретить немало скептических высказываний на ту же тему, а иногда к Big Data даже прикладывают эпитет red herring (букв. «копченая селедка» — ложный след, отвлекающий маневр).

Так что же такое Big Data? Проще всего представить Big Data в виде стихийно обрушившейся и невесть откуда взявшейся лавины данных или свести проблему к новым технологиям, радикально изменяющим информационную среду, а может быть, вместе с Big Data мы переживаем очередной этап в технологической революции? Скорее всего, и то, и другое, и третье, и еще пока неведомое. Показательно, что из более чем четыре миллиона страниц в Web, содержащих словосочетание Big Data, один миллион содержит еще и слово definition — как минимум четверть пишущих о Big Data пытается дать свое определение. Такая массовая заинтересованность свидетельствует в пользу того, что, скорее всего, в Big Data есть что-то качественно иное, чем то, к чему подталкивает обыденное сознание.

Предыстория

То, что подавляющая часть упоминаний Big Data так или иначе связана с бизнесом, может ввести в заблуждение. На самом деле термин родился отнюдь не в корпоративной среде, а заимствован аналитиками из научных публикаций. Big Data относится к числу немногих названий, имеющих вполне достоверную дату своего рождения — 3 сентября 2008 года, когда вышел специальный номер старейшего британского научного журнала Nature, посвященный поиску ответа на вопрос «Как могут повлиять на будущее науки технологии, открывающие возможности работы с большими объемами данных?». Специальный номер подытоживает предшествующие дискуссии о роли данных в науке вообще и в электронной науке (e-science) в частности.

Роль данных в науке стала предметом обсуждения очень давно — первым об обработке данных еще в XVIII веке писал английский астроном Томас Симпсон в труде «О преимуществах использования чисел в астрономических наблюдениях», но только в конце прошлого столетия интерес к этой теме приобрел заметную остроту, а на передний план обработка данных вышла в конце прошлого века, когда обнаружилось, что компьютерные методы могут применяться практически во всех науках от археологии до ядерной физики. Как следствие, заметно меняются и сами научные методы. Не случайно появился неологизм libratory, образованный от слов library (библиотека) и laboratory (лаборатория), который отражает изменения, касающиеся представления о том, что можно считать результатом исследования. До сих пор на суд коллег представлялись только полученные конечные результаты, а не сырые экспериментальные данные, а теперь, когда в «цифру» могут быть переведены самые разные данные, когда имеются разнообразные цифровые носители, то объектом публикации могут быть различного рода измеренные данные, причем особое значение приобретает возможность повторной обработки в libratory ранее накопленных данных. А далее складывается положительная обратная связь, за счет которой процесс накопления научных данных постоянно ускоряется. Именно поэтому, осознавая масштаб грядущих изменений, редактор номера Nature Клиффорд Линч предложил для новой парадигмы специальное название Большие Данные, выбранное им по аналогии с такими метафорами, как Большая Рефть, Большая Руда и т. п., отражающими не столько количество чего-то, сколько переход количества в качество.

Большие Данные и бизнес

Третья опора компьютинга

За все годы существования ИТ, которые на самом деле имеют дело с данными, а вовсе не с информацией, о важности самостоятельной роли данных почти никто не задумывался.

Леонид Черняк

Не прошло и года, как термин Big Data попал на страницы ведущих бизнес-изданий, в которых, однако, использовались уже совсем иные метафоры. Big Data сравнивают с минеральными ресурсами — the new oil (новая нефть), goldrush (золотая лихорадка), data mining (разработка данных), чем подчеркивается роль данных как источника скрытой информации; с природными катаклизмами — data tornado (ураган данных), data deluge (наводнение данных), data tidal wave (половодье данных), видя в них угрозу; улавливая связь с промышленным производством — data exhaust (выброс данных), firehose (шланг данных), Industrial Revolution (промышленная революция). В бизнесе, как и в науке, большие объемы данных тоже не есть что-то совершенно новое — уже давно говорили о необходимости работы с большими объемами данных, например в связи с распространением радиочастотной идентификации (RFID) и социальных сетей, и так же, как и в науке, здесь не хватало только яркой метафоры для определения происходящего. Вот почему в 2010 году появились первые продукты, претендующие на попадание в категорию Big Data, — нашлось подходящее название для уже существующих вещей. Показательно, что в версию 2011 Hype Cycle, характеризующую состояние и перспективы новых технологий, аналитики Gartner ввели еще одну позицию Big Data and Extreme Information Processing and Management с оценкой срока массового внедрения соответствующих решений от двух до пяти лет.

Почему Большие Данные оказались проблемой?

С момента появления термина Big Data прошло уже три года, но если в науке все более или менее ясно, то место Big Data в бизнесе остается неопределенным, не случайно так часто говорят о «проблеме Больших Данных», причем не просто о проблеме, но ко всему прочему еще и плохо определенной. Нередко проблему упрощают, интерпретируя наподобие закона Мура, с той лишь разницей, что в данном случае мы имеем дело с феноменом удвоения количества данных за год, или гиперболизируют, представляя чуть ли не как стихийное бедствие, с которым срочно нужно каким-то способом справиться. Данных действительно становится все больше и больше, но при всем этом упускается из виду то обстоятельство, что проблема отнюдь не внешняя, она вызвана не столько обрушившимися в невероятном количестве данными, сколько неспособностью старыми методами справиться с новыми объемами, и, что самое главное, нами самими создаваемыми. Наблюдается странный дисбаланс — способность порождать данные оказалась сильнее, чем способность их перерабатывать. Причина возникновения этого перекоса заключается, скорее всего, в том, что за 65 лет истории компьютеров мы так и не поняли, что же такое данные и как они связаны с результатами обработки. Странно, математики столетиями разбираются с основными понятиями своей науки, такими как число и системы счисления, привлекая к этому философов, а в нашем случае данные и информация, отнюдь не тривиальные вещи, оставлены без внимания и отданы на откуп интуитивному восприятию. Вот и получилось, что все эти 65 лет невероятными темпами развивались собственно технологии работы с данными и почти не развивалась кибернетика и теория информации, оставшиеся на уровне 50-х годов, когда ламповые компьютеры использовались исключительно для расчетов. Действительно, наблюдаемая сейчас суета вокруг Big Data при внимательном анализе вызывает скептическую улыбку.

 

Масштабирование и многоуровневое хранение

Облака, большие данные, аналитика – эти три фактора современных ИТ не только взаимосвязаны, но сегодня уже не могут существовать друг без друга. Работа с Большими Данными невозможна без облачных хранилищ и облачных вычислений – появление облачных технологий не только в виде идеи, а уже в виде законченных и реализованных проектов стало спусковым крючком для запуска нового витка спирали увеличения интереса к аналитике Больших Данных. Если говорить о влиянии на индустрию в целом, то сегодня стали очевидны возросшие требования к масштабированию систем хранения. Это действительно необходимое условие – ведь заранее сложно предсказать, для каких аналитических процессов понадобятся те или иные данные и насколько интенсивно будет загружено существующее хранилище. Кроме этого, становятся одинаково важны требования как по вертикальному, так и горизонтальному масштабированию.

В новом поколении своих систем хранения компания Fujitsu уделила большое внимание именно аспектам масштабирования и многоуровнего хранения данных. Практика показывает, что сегодня для выполнения аналитических задач требуется сильно загружать системы, однако бизнес требует, чтобы все сервисы, приложения и сами данные всегда оставались доступными. Кроме этого, требования к результатам аналитических исследований сегодня очень высоки – грамотно, правильно и своевременно проведенные аналитические процессы позволяют существенно улучшить результаты работы бизнеса в целом.

Александр Яковлев (Alexander.Yakovlev@ts.fujitsu.com), менеджер по маркетингу продукции Fujitsu (Москва).

 

Игнорированием роли данных и информации, как предметов исследования, была заложена та самая мина, которая взорвалась сейчас, в момент, когда изменились потребности, когда счетная нагрузка на компьютеры оказалась намного меньше, чем другие виды работ, выполняемые над данными, а цель этих действий заключается в получении новой информации и новых знаний из уже существующих массивов данных. Вот почему вне восстановления связей цепочки «данные — информация — знание» говорить о решении проблемы Больших Данных бессмысленно. Данные обрабатываются для получения информации, которой должно быть ровно столько, чтобы человек мог превратить ее в знание.

За последние десятилетия серьезных работ по связям сырых данных с полезной информацией не было, а то, что мы привычно называем теорией информации Клода Шеннона, является не чем иным, как статистической теорией передачи сигналов, и к информации, воспринимаемой человеком, не имеет никакого отношения. Есть множество отдельных публикаций, отражающих частные точки зрения, но нет полноценной современной теории информации. В результате подавляющее число специалистов вообще не делает различия между данными и информацией. Вокруг все только констатируют, что данных много или очень много, но зрелого представления, чего именно много, какими путями следует решать возникшую проблему, нет ни у кого — а все потому, что технические возможности работы с данными явно опередили уровень развития способностей к их использованию. Только у одного автора, редактора журнала Web 2.0 Journal Дайона Хинчклифа, имеется классификация Больших Данных, позволяющая соотнести технологии с результатом, который ждут от обработки Больших Данных, но и она далеко не удовлетворительна.

Хинчклиф делит подходы к Big Data на три группы: Быстрые Данные (Fast Data), их объем измеряется терабайтами; Большая Аналитика (Big Analytics) — петабайтные данные и Глубокое Проникновение (Deep Insight) — экзабайты, зеттабайты. Группы различаются между собой не только оперируемыми объемами данных, но и качеством решения по их обработки.

Обработка для Fast Data не предполагает получения новых знаний, ее результаты соотносятся с априорными знаниями и позволяют судить о том, как протекают те или иные процессы, она позволяет лучше и детальнее увидеть происходящее, подтвердить или отвергнуть какие-то гипотезы. Только небольшая часть из существующих сейчас технологий подходит для решения задач Fast Data, в этот список попадают некоторые технологии работы с хранилищами (продукты Greenplum, Netezza, Oracle Exadata, Teradata, СУБД типа Verica и kdb). Скорость работы этих технологий должна возрастать синхронно с ростом объемов данных.

Задачи, решаемые средствами Big Analytics, заметно отличаются, причем не только количественно, но и качественно, а соответствующие технологии должны помогать в получении новых знаний — они служат для преобразования зафиксированной в данных информации в новое знание. Однако на этом среднем уровне не предполагается наличие искусственного интеллекта при выборе решений или каких-либо автономных действий аналитической системы — она строится по принципу «обучения с учителем». Иначе говоря, весь ее аналитический потенциал закладывается в нее в процессе обучения. Самый очевидный пример — машина Watson , играющая в Jeopardy!. Классическими представителями такой аналитики являются продукты MATLAB, SAS, Revolution R, Apache Hive, SciPy Apache и Mahout.

Высший уровень, Deep Insight, предполагает обучение без учителя (unsupervised learning) и использование современных методов аналитики, а также различные способы визуализации. На этом уровне возможно обнаружение знаний и закономерностей, априорно неизвестных.

 

Аналитика Больших Данных

С течением времени компьютерные приложения становятся все ближе к реальному миру во всем его многообразии, отсюда рост объемов входных данных и отсюда же потребность в их аналитике, причем в режиме, максимально приближенном к реальному времени. Конвергенция этих двух тенденций привела к возникновению направления аналитика Больших Данных (Big Data Analytics).

Победа компьютера Watson стала блестящей демонстрацией возможностей Big Data Analytics — мы вступаем в интереснейшую эпоху, когда компьютер впервые используется не столько как инструмент для ускорения расчетов, а как помощник, расширяющий человеческие возможности в выборе информации и принятии решений. Казавшиеся утопическими замыслы Ванневара Буша, Джозефа Ликлайдера и Дага Энгельбарта начинают сбываться, но происходит это не совсем так, как это виделось десятки лет назад — сила компьютера не в превосходстве над человеком по логическим возможностям, на что особенно уповали ученые, а в существенно большей способности обрабатывать гигантские объемы данных. Нечто подобное было в противоборстве Гарри Каспарова с Deep Blue, компьютер не был более искусным игроком, но он мог быстрее перебирать большее количество вариантов.

Гигантские объемы в сочетании с высокой скоростью, отличающие Big Data Analytics от других приложений, требуют соответствующих компьютеров, и сегодня практически все основные производители предлагают специализированные программно-аппаратные системы: SAP HANA, Oracle Big Data Appliance, Oracle Exadata Database Machine и Oracle Exalytics Business Intelligence Machine, Teradata Extreme Performance Appliance, NetApp E-Series Storage Technology, IBM Netezza Data Appliance, EMC Greenplum, Vertica Analytics Platform на базе HP Converged Infrastructure. Помимо этого в игру вступило множество небольших и начинающих компаний: Cloudera, DataStax, Northscale, Splunk, Palantir, Factual, Kognitio, Datameer, TellApart, Paraccel, Hortonworks.

Обратная связь

Качественно новые приложения Big Data Analytics требуют для себя не только новых технологий, но и качественного иного уровня системного мышления, а вот с этим наблюдаются трудности — разработчики решений Big Data Analytics часто заново открывают истины, известные с 50-х годов. В итоге нередко аналитика рассматривается в отрыве от средств подготовки исходных данных, визуализации и других технологий предоставления результатов человеку. Даже такая уважаемая организация, как The Data Warehousing Institute, рассматривает аналитику в отрыве от всего остального: по ее данным, уже сейчас 38% предприятий исследуют возможность использования Advanced Analytics в практике управления, а еще 50% намереваются сделать это в течение ближайших трех лет. Такой интерес обосновывается приведением множества аргументов из бизнеса, хотя можно сказать и проще — предприятиям в новых условиях требуется более совершенная система управления, и начинать ее создание надо с установления обратной связи, то есть с системы, помогающей в принятии решений, а в будущем, может быть, удастся автоматизировать и собственно приятие решений. Удивительно, но все сказанное укладывается в методику создания автоматизированных систем управления технологическими объектами, известную с 60-х годов.

Новые средства для анализа требуются потому, что данных становится не просто больше, чем раньше, а больше их внешних и внутренних источников, теперь они сложнее и разнообразнее (структурированные, неструктурированные и квазиструктурированные), используются различные схемы индексации (реляционные, многомерные, noSQL). Прежними способами справиться с данными уже невозможно — Big Data Analytics распространяется на большие и сложные массивы, поэтому еще используют термины Discovery Analytics (открывающая аналитика) и Exploratory Analytics (объясняющая аналитика). Как ни называть, суть одна — обратная связь, снабжающая в приемлемом виде лиц, принимающих решение, сведениями о различного рода процессах.

Компоненты

Для сбора сырых данных используются соответствующие аппаратные и программные технологии, какие именно — зависит от природы объекта управления (RFID, сведения из социальных сетей, разнообразные текстовые документы и т. п.). Эти данные поступают на вход аналитической машины (регулятора в цепи обратной связи, если продолжать аналогию с кибернетикой). Этот регулятор базируется на программно-аппаратной платформе, на которой работает собственно аналитическое ПО, он не обеспечивает выработки управляющих воздействий, достаточных для автоматического управления, поэтому в контур включаются ученые по данным (data scientist) или инженеры в области данных. Их функцию можно сравнить с той ролью, которую играют, например, специалисты в области электротехники, использующие знания из физики в приложении к созданию электрических машин. Задача инженеров заключается в управлении процессом преобразования данных в информацию, используемую для принятия решений, — они-то и замыкают цепочку обратной связи. Из четырех компонентов Big Data Analytics в данном случае нас интересует только один — программно-аппаратная платформа (системы этого типа называют Analytic Appliance или Data Warehouse Appliance).

На протяжении ряда лет единственным производителем аналитических специализированных машин была Teradata, но не она была первой — еще в конце 70-х годов тогдашний лидер британской компьютерной индустрии компания ICL предприняла не слишком удачную попытку создать контентно-адресуемое хранилище (Content-Addressable Data Store), в основе которого была СУБД IDMS. Но первой создать «машину баз данных» удалось компании Britton-Lee в 1983 году на базе мультипроцессорной конфигурации процессоров семейства Zilog Z80. В последующем Britton-Lee была куплена Teradata, с 1984 года выпускавшая компьютеры MPP-архитектуры для систем поддержки принятия решений и хранилищ данных. А первым представителем нового поколения поставщиков подобных комплексов стала компания Netezza — в ее решении Netezza Performance Server использовались стандартные серверы-лезвия вместе со специализированными лезвиями Snippet Processing Unit.

Аналитика в СУБД

Аналитика здесь — прежде всего прогнозная, или предиктивная (Predictive Analysis, РА). В большинстве существующих реализаций исходными для систем РА являются данные, ранее накопленные в хранилищах данных. Для анализа данные сначала перемещают в промежуточные витрины (Independent Data Mart, IDM), где представление данных не зависит от использующих их приложений, а затем те же данные переносятся в специализированные аналитические витрины (Аnalytical Data Mart, ADM), и уже с ними работают специалисты, применяя различные инструменты разработки, или добычи данных (Data Mining). Такая многоступенчатая модель вполне приемлема для относительно небольших объемов данных, но при их увеличении и при повышении требований к оперативности в такого рода моделях обнаруживается ряд недостатков. Помимо необходимости в перемещении данных существование множества независимых ADM приводит к усложнению физической и логической инфраструктуры, разрастается количеств используемых инструментов моделирования, полученные разными аналитиками результаты оказываются несогласованны, далеко не оптимально используются вычислительные мощности и каналы. Кроме того, раздельное существование хранилищ и ADM делает практически невозможной аналитику во времени, приближенном к реальному.

Выходом может быть подход, получивший название In-Database Analytics или No-Copy Analytics, предполагающий использование для целей аналитики данных, непосредственно находящихся в базе. Такие СУБД иногда называют аналитическими и параллельными. Подход стал особенно привлекателен с появлением технологий MapReduce и Hadoop. В новых приложениях поколения класса In-Database Analytics все виды разработки данных и другие виды интенсивной работы выполняются непосредственно над данными, находящимися в хранилище. Очевидно, что это заметно ускоряет процессы и позволяет выполнять в реальном времени такие приложения, как распознавание образов, кластеризация, регрессионный анализ, различного рода прогнозирование. Ускорение достигается не только за счет избавления от перемещений из хранилища в витрины, но главным образом за счет использования различных методов распараллеливания, в том числе кластерных систем с неограниченным масштабированием. Решения типа In-Database Analytics открывают возможность для использования облачных технологий в приложении к аналитике. Следующим шагом может стать технология SAP HANA (High Performance Analytic Appliance), суть которой в размещении данных для анализа в оперативной памяти.

Основные поставщики...

К 2010 году основными поставщиками ПО для In-Database Analytics были компании Aster Data (Aster nCluster), Greenplum (Greenplum Database), IBM (InfoSphere Warehouse; IBM DB2), Microsoft (SQL Server 2008), Netezza (Netezza Performance System, PostGresSQL ), Oracle (Oracle Database 11g/10g, Oracle Exadata), SenSage (SenSage/columnar), Sybase (Sybase IQ), Teradata и Vertica Systems (Vertica Analytic Database). Все это хорошо известные компании, за исключением стартапа из Кремниевой долины SenSage. Продукты заметно различаются по типу данных, с которыми они могут работать, по функциональным возможностям, интерфейсам, по применяемому аналитическому ПО и по их способности работать в облаках. Лидером по зрелости решений является Teradata, а по авангардности — Aster Data. Список поставщиков аналитического ПО короче — в локальных конфигурациях могут работать продукты компаний KXEN, SAS, SPSS и TIBCO, а в облаках — Amazon, Cascading, Google, Yahoo! и Сloudera.

Год 2010-й стал поворотным в области предиктивной аналитики, сравнимым с 2007 годом, когда IBM приобрела Cognos, SAP — Business Object, а Oracle — Hyperion. Все началось с того, что EMC приобрела Greenplum, затем IBM — Netezza, HP — Vertica, Teradata купила Aster Data и SAP купила Sybase.

…и новые возможности

Аналитическая парадигма открывает принципиально новые возможности, что успешно доказали два инженера из Кёльна, создавшие компанию ParStream (официальное имя empulse GmbH). Вдвоем им удалось создать аналитическую платформу на базе процессоров как универсальных, так и графических процессоров, конкурентную с предшественниками. Четыре года назад Михаэль Хюммепль и Джорг Бинерт, работавшие прежде в Accenture, получили заказ от германской туристической фирмы, которой для формирования туров требовалась система, способная за 100 миллисекунд выбирать запись, содержащую 20 параметров, в базе из 6 млрд записей. Ни одно из существующих решений с такой задачей справиться не может, хотя с аналогичными проблемами сталкиваются везде, где требуется оперативный анализ содержимого очень больших баз данных. Компания ParStream родилась из предпосылки применения технологий высокопроизводительных вычислений к Big Data Analytics. Хюммепль и Бинерт начали с того, что написали собственное ядро СУБД, рассчитанное для работы на кластере x86-архитектуры, поддерживающем операции с данными в виде параллельных потоков, отсюда и название ParStream. Они избрали в качестве исходной установки работу только со структурированными данными, что собственно и открывает возможность для относительно простого распараллеливания. По своему замыслу эта база данных ближе к новому проекту Google Dremel, чем к MapReduce или Hadoop, которые не адаптированы к запросам в реальном времени. Начав с платформы x86/Linux, Хюммепль и Бинерт вскоре убедились, что их база данных может поддерживаться и графические процессоры nVidia Fermi.

 

Big Data и Data Processing

Чтобы понять, чего же следует ожидать от того, что назвали Big Data, следует выйти за границы современного узкого «айтишного» мировоззрения и попытаться увидеть происходящее в более широкой историко-технологической ретроспективе, например попробовать найти аналогии с технологиями, имеющими более длительную историю. Ведь, назвав предмет нашей деятельности технологией, надо и относиться к нему как к технологии. Практически все известные материальные технологии сводятся к переработке, обработке или сборке специфического для них исходного сырья или каких-то иных компонентов с целью получения качественно новых продуктов — что-то имеется на входе технологического процесса и нечто на выходе.

Особенность нематериальных информационных технологий состоит в том, что здесь не столь очевидна технологическая цепочка, не ясно, что является сырьем, что результатом, что поступает на вход и что получается на выходе. Проще всего сказать, что на входе сырые данные, а на выходе полезная информация. В целом почти верно, однако связь между этими двумя сущностями чрезвычайно сложна; если же остаться на уровне здоровой прагматики, то можно ограничиться следующими соображениями. Данные — это выраженные в разной форме сырые факты, которые сами по себе не несут полезного смысла до тех пор, пока не поставлены в контекст, должным образом не организованы и не упорядочены в процессе обработки. Информация появляется в результате анализа обработанных данных человеком, этот анализ придает данным смысл и обеспечивает им потребительские качеств. Данные — это неорганизованные факты, которые необходимо превращать в информацию. До последнего времени представления об обработке данных (data processing) сводились к органичному кругу алгоритмических, логических или статистических операций над относительно небольшими объемами данных. Однако по мере сближения компьютерных технологий с реальным миром возрастает потребность превращений данных из реального мира в информацию о реальном мире, обрабатываемых данных становится больше, и требования к скорости обработки возрастают.

Логически информационные технологии мало чем отличаются от материальных технологий, на входе сырые данные, на выходе — структурированные, в форме, более удобной для восприятия человеком, извлечения из них информации и силой интеллекта превращения информации в полезное знание. Компьютеры назвали компьютерами за их способность считать, вспомним первое приложение для ENIAC — обработка данных стрельбы из орудия и превращение их в артиллерийские таблицы. То есть компьютер перерабатывал сырые данные, извлекал полезные и записывал их в форме, приемлемой для использования. Перед нами не что иное, как обычный технологический процесс. Вообще говоря, вместо привившегося термина Information Technology следовало бы чаще употреблять более точный Data Processing.

На информационные технологии должны распространяться общие закономерности, в согласии с которыми развиваются все остальные технологии, а это прежде всего увеличение количества перерабатываемого сырья и повышение качества переработки. Так происходит везде, независимо от того, что именно служит сырьем, а что результатом, будь то металлургия, нефтехимия, биотехнологии, полупроводниковые технологии и т. д. Общим является еще и то, что ни одно из технологических направлений не развивается монотонно, рано или поздно возникают моменты ускоренного развития, скачки. Быстрые переходы могут происходить в тех случаях, когда вовне возникает потребность, а внутри технологий есть способность ее удовлетворить. Компьютеры нельзя было строить на вакуумных лампах — и появились полупроводники, автомобилям нужно много бензина — открыли крекинг-процесс, и таких примеров множество. Таким образом, под именем Big Data скрывается намечающийся качественный переход в компьютерных технологиях, способный повлечь за собой серьезные изменения, не случайно его называют новой промышленной революцией. Big Data — очередная техническая революция со всеми вытекающими последствиями.

Первый опыт в Data Processing датируется IV тысячелетием до нашей эры, когда появилось пиктографическое письмо. С тех пор сложилось несколько основных направлений работы с данными, самым мощным было и остается текстовое, от первых глиняных табличек до SSD, от библиотек середины первого тысячелетия до нашей эры до современных библиотек, затем появились различного рода математические численные методы от папирусов с доказательством теоремы Пифагора и табличных приемов упрощения расчетов до современных компьютеров. По мере развития общества стали копиться различного рода табличные данные, автоматизация работы с которыми началась с табуляторов, а в XIX и ХХ веке было предложено множество новых методов создания и накопления данных. Необходимость работы с большими объемами данных понимали давно, но не было средств, отсюда утопические проекты типа «Либрариума» Поля Отле, или фантастическая система для прогнозирования погоды с использованием труда 60 тыс. людей-расчетчиков.

Сегодня компьютер превратился в универсальный инструмент для работы с данными, хотя задумывался он только лишь для автоматизации расчетов. Идея применить компьютер для Data Processing зародилась в IBM через десять лет после изобретения цифровых программируемых компьютеров, а до этого для обработки данных использовались перфораторные устройства типа Unit Record, изобретенные Германом Холлеритом. Их называли Unit Record, то есть единичная запись — каждая карта содержала всю запись, относящуюся к какому-то одному объекту. Первые компьютеры не умели работать с Большими Данными — лишь с появлением накопителей на дисках и лентах они смогли составить конкуренцию машино-счетным станциям, просуществовавшим до конца 60-х годов. Кстати, в реляционных базах данных явным образом прослеживается наследие Unit Record.

 

Простота – залог успеха

Рост объемов сырых данных вместе с необходимостью их анализа в режиме реального времени требуют создания и внедрения инструментов, позволяющих эффективно решать так называемую задачу Big Data Analytics. Технологии компании Information Builders позволяют работать с данными, поступающими из любых источников в режиме реального времени, благодаря множеству различных адаптеров и архитектуре Enterprise Service Bus. Инструмент WebFOCUS позволяет анализировать данные «на лету» и дает возможность визуализировать результаты лучшим для пользователя способом.

Основываясь на технологии RSTAT, компания Information Builders создала продукт для предиктивной аналитики, позволяющий проводить сценарное прогнозирование: «Что будет, если» и «Что необходимо для».

Технологии бизнес-аналитики пришли и в Россию, однако лишь немногие российские компании используют именно предиктивный анализ, что вызвано низкой культурой использования бизнес-аналитики на отечественных предприятиях и сложностью восприятия существующих методов анализа бизнес-пользователем. Учитывая это, компания Information Builders предлагает сегодня продукты, которые аналитиками Gartner оцениваются как самые простые в использовании.

Михаил Строев (mstroev@infobuild-cis.ru), директор по развитию бизнеса в России и СНГ InfoBuild CIS (Москва).

 

Данные повсюду

По мере постепенного превращения компьютеров из счетных устройств в универсальные машины для обработки данных, примерно после 1970 года, стали появляться новые термины: данные как продукты (data product); инструменты для работы с данными (data tool); приложения, реализуемые посредством соответствующей организации (data application); наука о данных (data science); ученые, работающие с данными (data scientist), и даже журналисты, которые доносят сведения, содержащиеся в данных, до широкой публики (data journalist).

Большое распространение сегодня получили приложения класса data application, которые не просто выполняют операции над данными, а извлекают из них дополнительные ценности и создают продукты в виде данных. К числу первых приложений этого типа относится база аудиодисков CDDB, которая в отличие от традиционных баз данных создана путем экстрагирования данных из дисков и сочетания их с метаданными (названия дисков, треков и т. п.). Эта база лежит в основе сервиса Apple iTunes. Одним из факторов коммерческого успеха Google также стало осознание роли data application — владение данными позволяет этой компании многое «знать», используя данные, лежащие вне искомой страницы (алгоритм PageRank). В Google достаточно просто решена проблема корректности правописания — для этого создана база данных ошибок и исправлений, а пользователю предлагаются исправления, которые он может принять или отклонить. Аналогичный подход применяется и для распознавания при речевом вводе — в его основе накопленные аудиоданные.

В 2009 году во время вспышки свиного гриппа анализ запросов к поисковым машинам позволил проследить процесс распространения эпидемии. По пути Google пошли многие компании (Facebook, LinkedIn, Amazon и др.), не только предоставляющие услуги, но и использующие накопленные данные в иных целях. Возможность обрабатывать данные такого типа дала толчок к появлению еще одной науки о населении — citizen science. Результаты, полученные путем всестороннего анализа данных о населении, позволяют получить гораздо более глубокие знания о людях и принимать более обоснованные административные и коммерческие решения. Совокупность данных и средств работы с ними сейчас называют infoware.

 

 

Машина для Больших Данных

Хранилища данных, интернет-магазины, биллинговые системы или любая другая платформа, которую можно отнести к проектам Больших Данных, обычно обладает уникальной спецификой, и при ее проектировании главным является интеграция с промышленными данными, обеспечение процессов накопления данных, их организации и аналитики.

Компания Oracle предоставила интегрированное решение Oracle Big Data Appliance поддержки цепочки обработки Больших Данных, состоящее из оптимизированного оборудования с полным стеком программного обеспечения и 18 серверов Sun X4270 M2. Межсоединение строится на базе Infiniband 40 Гбит/с и 10-Gigabit Ethernet. Oracle Big Data Appliance включает в себя комбинацию как открытого, так и специализированного ПО от Oracle.

Хранилища типа ключ-значение или NoSQL СУБД признаны сегодня основными для мира Больших Данных и оптимизированы для быстрого накопления данных и доступа к ним. В качестве такой СУБД для Oracle Big Data Appliance используется СУБД на базе Oracle Berkley DB, хранящая информацию о топологии системы хранения, распределяющая данные и понимающая, где могут быть размещены данные с наименьшими временными затратами.

Решение Oracle Loader for Hadoop позволяет с помощью технологии MapReduce создавать оптимизированные наборы данных для их загрузки и анализа в СУБД Oracle 11g. Данные генерируются в «родном» формате СУБД Oracle, что позволяет минимизировать использование системных ресурсов. Обработка отформатированных данных осуществляется на кластере, а затем данные могут быть доступны с рабочих мест пользователей традиционной РСУБД с помощью стандартных команд SQL или средств бизнес-аналитики. Интеграция данных Hadoop и Oracle СУБД осуществляется при помощи решения Oracle Data Integrator.

Oracle Big Data Appliance поставляется с открытым дистрибутивом Apache Hadoop, включая файловую систему HDFS и другие компоненты, открытым дистрибутивом статистического пакета R для анализа сырых данных и системой Oracle Enterprise Linux 5.6. Предприятия, уже использующие Hadoop, могут интегрировать данные, размещенные на HDFS в СУБД Oracle с помощью функционала внешних таблиц, причем нет необходимости сразу загружать данные в СУБД – внешние данные могут быть использованы в связке с внутренними данными базы Oracle при помощи команд SQL.

Подключение между Oracle Big Data Appliance и Oracle Exadata через Infiniband обеспечивает высокоскоростную передачу данных для пакетной обработки или SQL-запросов. Oracle Exadata обеспечивает необходимую производительность как для хранилищ данных, так и для приложений оперативной обработки транзакций.

Новый продукт Oracle Exalytics может быть использован для решения задач бизнес аналитики и оптимизирован для использования Oracle Business Intelligence Enterprise Edition с обработкой в оперативной памяти.

Владимир Демкин (pr-team_ru@oracle.com), ведущий консультант по направлению Oracle Exadata компании Oracle СНГ (Москва).

 

Наука и специалисты

Автор доклада «Что такое наука о данных?» (What is Data Science?), вышедшего в серии O’Reilly Radar Report, Майк Лукидис написал: «Будущее принадлежит компаниям и людям, способным превратить данные в продукты». Это высказывание невольно вызывает в памяти известные слова Ротшильда «Кто владеет информацией – тот владеет миром», произнесенные им, когда он раньше других узнал о поражении Наполеона при Ватерлоо и провернул аферу с ценными бумагами. Сегодня этот афоризм стоит перефразировать: «Миром владеет тот, кто владеет данными и технологиями их анализа». Живший немного позже Карл Маркс показал, что промышленная революция разделила людей на две группы — на владеющих средствами производства и тех, кто работает на них. В общих чертах сейчас происходит нечто подобное, но теперь предметом владения и разделения функций являются не средства производства материальных ценностей, а средства производства данных и информации. И вот тут-то и возникают проблемы — оказывается, владеть данными намного сложнее, чем владеть материальными активами, первые довольно просто тиражируются и вероятность их хищения гораздо выше, чем кражи материальных предметов. Кроме того, существуют легальные приемы разведки — при наличии достаточного объема и соответствующих аналитических методов можно «вычислить» то, что скрыто. Вот почему сейчас такое внимание уделяется аналитике Больших Данных Big Data Analytics (см. врезку) и средствам защиты от нее.

Различные виды деятельности с данными, и прежде всего владение методами извлечения информации, называют наукой о данных (data science), что, во всяком случае в переводе на русский, несколько дезориентирует, поскольку скорее относится не к некоторой новой академической науке, а к междисциплинарному набору знаний и навыков, необходимых для извлечения знаний. Состав подобного набора в значительной мере зависит от области, но можно выделить более или менее обобщенные квалификационные требования к специалистам, которых называют data scientist. Лучше всего это удалось сделать Дрю Конвей, который в прошлом занимался анализом данных о террористических угрозах в одной из спецслужб США. Основные тезисы его диссертации опубликованы в ежеквартальном журнале IQT Quarterly, который издавается компанией In-Q-Tel, выполняющей посредническую функцию между ЦРУ США и научными организациями.

Большие Данные — новая теория и практика
Диаграмма Венна для науки о данных

 

Свою модель Конвей изобразил в виде диаграммы Венна (см. рисунок), представляющей три области знания и умений, которыми нужно владеть и обладать, чтобы стать специалистом по данным. Хакерские навыки не следует понимать как злоумышленные действия, в данном случае так названо сочетание владения определенным инструментарием с особым аналитическим складом ума, как у Эркюля Пуаро, или, возможно, эту способность можно назвать дедуктивным методом Шерлока Холмса. В отличие от великих сыщиков нужно еще быть экспертом в ряде математических направлений и понимать предмет. Машинное обучение образуется на пересечении первых двух областей, на пересечении второй и третьей — традиционные методы. Третья зона пересечения опасна спекулятивностью, без математических методов не может быть объективного видения. На пересечении всех трех зон лежит наука о данных.

Диаграмма Конвея дает упрощенную картину; во-первых, на пересечении хакерского и математического кругов лежит не только машинное обучение, во-вторых, размер последнего круга намного больше, сегодня он включает множество дисциплин и технологий. Машинным обучением называют только одну из областей искусственного интеллекта, связанную с построением алгоритмов, способных к обучению, она делится на две подобласти: прецедентное, или индуктивное обучение, выявляющее скрытые закономерности в данных, и дедуктивное, нацеленное на формализацию экспертных знаний. Еще машинное обучение делится на обучение с учителем (Supervised Learning), когда изучаются методы классификации, основанные на заранее подготовленных тренировочных наборах данных, и без учителя (Unsupervised Learning), когда внутренние закономерности ищутся посредством кластерного анализа.

***

Итак, Big Data — это не спекулятивные размышления, а символ настигающей технической революции. Необходимость в аналитической работе с большими данными заметно изменит лицо ИТ-индустрии и стимулирует появление новых программных и аппаратных платформ. Уже сегодня для анализа больших объемов данных применяются самые передовые методы: искусственные нейронные сети — модели, построенные по принципу организации и функционирования биологических нейронных сетей; методы предиктивной аналитики, статистики и Natural Language Processing (направления искусственного интеллекта и математической лингвистики, изучающего проблемы компьютерного анализа и синтеза естественных языков). Используются также и методы, привлекающие людей-экспертов, или краудсорсинг, А/В тестирование, сентимент-анализ и др. Для визуализации результатов применяются известные методы, например облака тегов и совсем новые Clustergram, History Flow и Spatial Information Flow.

Со стороны технологий Больших Данных поддерживаются распределенными файловыми системами Google File System, Cassandra, HBase, Lustre и ZFS, программными конструкциями MapReduce и Hadoop и множеством других решений. По оценкам экспертов, например McKinsey Institute, под влиянием Больших Данных наибольшей трансформации подвергнется сфера производства, здравоохранения, торговли, административного управления и наблюдения за индивидуальными перемещениями.