Коммутация третьего уровня способствовала распространению структурированных сетей.

B последние годы специалисты в области локальных сетей все чаще склоняются к тому, что сети с сотнями, тысячами или даже десятками тысяч узлов должны быть структурированы в соответствии с иерархической моделью, превосходство которой перед плоской, неиерархической, моделью кажется убедительным.

Казалось бы, после замены медленных маршрутизаторов на более производительные коммутаторы третьего уровня ничто больше не сможет помешать распространению этой модели. Однако удешевление коммутаторов способствует выбору в пользу решений полностью на базе второго уровня. Преимущества структурированных сетей при этом игнорируются.

ПРЕИМУЩЕСТВА ИЕРАРХИЧЕСКОЙ МОДЕЛИ

В иерархической модели вся сеть делится на несколько уровней, работа с которыми производится по отдельности. Это весьма облегчает постановку задач при проектировании, поскольку каждый отдельный уровень можно реализовать в соответствии со специфическими требованиями определенной области охвата. Уменьшение размеров подсетей позволяет добиться снижения числа коммуникационных связей каждого конечного устройства. Так, например, широковещательные «штормы» быстро растут вместе с увеличением числа систем в плоской сети.

Ответственность за обслуживание отдельных подобластей сетевого дерева в иерархической модели легко делегируется без каких-либо серьезных проблем с интерфейсом, что невозможно в случае плоской сети. Кроме того, наглядность сетевой структуры в случае иерархической модели также оправдывает себя при поиске ошибок. При иерархическом построении сети различного рода изменения реализовать гораздо проще, поскольку, как правило, они затрагивают лишь часть системы. В плоской же модели они способны повлиять на всю сеть. Это обстоятельство значительно упрощает наращивание иерархических сетей: оно реализуется добавлением новой сетевой области к существующему уровню или следующего уровня без необходимости перекройки всей структуры.

ОТ МАРШРУТИЗАЦИИ К КОММУТАЦИИ НА ТРЕТЬЕМ УРОВНЕ

Долгое время успешному распространению иерархической схемы построения сети мешали высокая стоимость и низкая производительность имеющихся устройств. Классические маршрутизаторы не могли соперничать с коммутаторами второго уровня ни по скорости передачи пакетов, ни по стоимости портов. Реализация необходимой комбинации маршрутизации и коммутации второго уровня на практике оказалась проблематичной. Поэтому на многих предприятиях выбор для коммуникаций в пределах подсетей IP или виртуальных локальных сетей (Virtual Local Area Network, VLAN) был сделан в пользу комбинированной коммутации кадров второго уровня и АТМ. Между тем высокопроизводительного оборудования для коммуникаций по IP между виртуальными сетями не было. Оно наконец-то стало доступным с появлением коммутации на третьем уровне (с исправлением первоначальных недостатков ее можно теперь считать вполне зрелой).

Коммутаторы третьего уровня осуществляют маршрутизацию каждого пакета в отдельности с помощью специализированных интегральных схем (Applications Specific Integrated Circuit, ASIC), при этом они анализируют содержимое пакетов и принимают решения о выборе пути на основе информации с более высоких уровней. Коммуникация между VLAN происходит так же быстро, как и внутри, т. е. с максимальной пропускной способностью сети. На рынке уже появились продукты со скоростью передачи до 100 млн пакетов в секунду.

Замена имеющихся маршрутизаторов на коммутаторы третьего уровня осуществляется очень просто: заменить требуется только соответствующие устройства. Все навыки и потенциал ноу-хау, накопленный за годы эксплуатации маршрутизаторов, могут быть использованы в дальнейшей работе.

Коммутаторы второго и третьего уровней в настоящее время мало чем отличаются друг от друга в плане производительности, поэтому вопрос выбора типа устройства зависит — наряду с функциональностью — от стоимости портов. Вместе с тем, даже несмотря на заметное удешевление коммутаторов третьего уровня, простые коммутаторы второго уровня по-прежнему стоят намного меньше. Тем самым область применения первых — главным образом сетевые магистрали, а последних — рабочие группы.

ЧЕТКОЕ ЛОКАЛЬНОЕ ПОДЧИНЕНИЕ

Рисунок 1. Плоская сеть второго уровня.

Связанная с коммутацией второго уровня технология виртуальных локальных сетей появилась вследствие стремления свести к минимуму коммуникации между подсетями IP, поскольку они осуществляются по медленным соединениям с маршрутизаторами. Увеличить долю коммуникаций внутри VLAN и снизить таковую между VLAN можно путем отображения на виртуальные локальные сети подсетей IP и выделенных организационных структур. При этом одна и та же подсеть может распространяться на несколько зданий — как правило, для виртуальных локальных сетей география не имеет никакого значения.

Рисунок 2. Избыточная сеть второго/третьего уровня.

Коммутация третьего уровня все же дает шанс на последовательное претворение в жизнь иерархических принципов построения сети. Тем самым особое значение снова приобретает вопрос о так называемом плоском или иерархическом подходе. Логическая структура плоской неструктурированной сети соответствует представленной на Рисунке 1 схеме. Связь между местоположением конечных устройств и их IP-адресами отсутствует. Третий октет IP-адреса (на рисунке: «1», «2» или «3») не дает никакой информации о расположении конечного устройства.

Альтернативой может быть инфраструктура третьего уровня в ядре сети с подключенными коммутаторами второго уровня, возможно, так, как это представлено на Рисунке 2. Структурированная сеть соответствует изображенной на Рисунке 3 логической схеме, в которой отчетливо прослеживается зависимость между местоположением конечных устройств и их IP-адресами. Третий октет IP-адреса дает точную информацию о том, где находится конечное устройство. В четвертом и последнем октете указываются конкретные конечные устройства.

Рисунок 3. Логическая структура сети третьего уровня.

СТРУКТУРИРОВАННЫЕ СЕТИ ВТОРОГО/ТРЕТЬЕГО УРОВНЕЙ

При исследовании достоинств и недостатков рассматриваемых топологий все-таки можно найти один значительный позитивный аспект плоских сетей второго уровня: при перемещениях оборудования не требуется менять IP-адреса и не надо перенастраивать приложения, в которых IP-адреса используются в качестве идентификационных признаков.

Однако этому можно противопоставить целый ряд преимуществ структурированных сетей второго/третьего уровня:

  • отсутствие отрицательных последствий потенциального дублирования IP-адресов для всей сети в целом;
  • разделение доменов широковещательной рассылки и, тем самым, значительное снижение нагрузки на конечные устройства;
  • повсеместное соответствие адресов сетевого уровня зданиям и коммутаторам: «говорящие» адреса облегчают локализацию возникающих ошибок;
  • возможность реализации функций безопасности на границах между подсетями;
  • обеспечение нужного качества сервиса на сетевом и транспортном уровнях, например путем определения приоритета для некоторых приложений;
  • более эффективное управление широковещательными рассылками благодаря применению маршрутизации широковещательного трафика в коммутаторах третьего уровня;
  • значительное сокращение времени, необходимого для обеспечения сходимости при реализации избыточных соединений. К примеру, при первоочередном выборе кратчайшего маршрута (Open Shortest Path First, OSPF) для этого понадобится всего несколько секунд, в то время как протоколу Spanning Tree — от 40 до 50 с. На уровне подсетей IP в качестве механизма избыточности для маршрутизатора по умолчанию можно применять протокол маршрутизатора «горячего» резерва/виртуальный протокол избыточной маршрутизации (Hot Standby Router Protocol/Virtual Router Redundancy Protocol, HSRP/VRRP).

КОНКУРИРУЮЩИЕ ПОДХОДЫ К ДИЗАЙНУ

Структурированная сеть второго/третьего уровня, по-видимому, лучше всего подходит для обеспечения безопасной и стабильной работы даже в крупных сетях. К таким выводам приходят практически все архитекторы сетей, однако в последнее время немало приверженцев получают новый подход к дизайну сети, в основу которого положены исключительно коммутаторы второго уровня. Это связано с тем, что многие предприятия вынуждены искать возможности для уменьшения инвестиций, в том числе и в локальные сети.

Подобные концепции базируются преимущественно на применении недорогих коммутаторов второго уровня и заключаются в составлении из них, к примеру, кольцевой структуры. Механизм реализации избыточности в кольцевых структурах опирается на протокол Rapid Spanning Tree. Этот подход поддерживается стандартом IEEE 802.1w, где определена быстрая реконфигурация покрывающего дерева, целью разработки которого было сокращение до нескольких секунд времени сходимости протокола Spanning Tree, пользующегося за свою медлительность дурной славой.

Подобные «недорогие» схемы, где модель иерархической сетевой структуры остается за бортом, на первый взгляд выглядят привлекательными: экономия исчисляется в десятках процентов. Однако умеренный скепсис не повредит. Дешевые коммутаторы второго уровня должны иметь стабильные коды для поддержки Rapid Spanning Tree. Однако это кажется очень смелым предположением с учетом того, сколько времени потребовалось, чтобы исходный алгоритм стал работать более-менее стабильно. К тому же нельзя забывать, что малое значение времени сходимости при наличии избыточных соединений — всего лишь одна из причин, по которым применяется инфраструктура третьего уровня. А как же тогда «говорящие» IP-адреса, защита от ошибочно заданных адресов, сокращение широковещательного трафика и более эффективное управление широковещательным трафиком в сетях на третьем уровне?

При такой точке зрения ценовый аспект приобретает относительный характер, ведь, в конце концов, эти два подхода к сетевому дизайну нельзя сравнивать. Конечно же, полностью избыточный дизайн с топологией «двойная звезда» стоит гораздо больше каскадной структуры с недорогими компонентами. Впрочем, проект сети с применением устройств третьего уровня тоже можно несколько удешевить: вовсе не обязательно брать за основу аппаратное обеспечение «с избытком». Это поможет построить сеть третьего уровня и сэкономить при этом порядка 35% ее стоимости.

Бероц Моайери работает в Comconsult Beratung und Planung. С ним можно связаться по адресу: http://www.comconsult.com