С.Д. Кузнецов

Институт системного программирования РАН, Ассоциация пользователей ОС UNIX (SUUG), Московская секция ACM SIGMOD, kuz@ivann.delta.msk.su


Немного теории...
Глава 4. Реляционный подход к организации баз данных, или Теория и Интуиция
Глава 5. Базисные средства манипулирования реляционными данными, или На чем базируются языки запросов

Немного теории...

Начиная с этого места, мы приступаем к изучению реляционных баз данных и систем управления реляционными базами данных. Этот подход является наиболее распространенным в настоящее время, хотя наряду с общепризнанными достоинствами обладает и рядом недостатков. К числу наибольших достоинств реляционного подхода можно отнести:

  • наличие небольшого набора абстракций, которые позволяют сравнительно просто моделировать большую часть распространенных предметных областей и допускают точные формальные определения, оставаясь интуитивно понятными;
  • наличие простого и в то же время мощного математического аппарата, опирающегося главным образом на теорию множеств и математическую логику и обеспечивающего теоретический базис реляционного подхода к организации баз данных;
  • возможность ненавигационного манипулирования данными без необходимости знания конкретной физической организации баз данных во внешней памяти. Реляционные системы далеко не сразу получили широкое распространение. В то время как основные теоретические результаты в этой области были получены еще в 70-х, и тогда же появились первые прототипы реляционных СУБД, долгое время считалось невозможным добиться эффективной реализации таких систем. Однако отмеченные выше преимущества и постепенное накопление методов и алгоритмов организации реляционных баз данных и управления ими привели к тому, что уже в середине 80-х годов реляционные системы практически вытеснили с мирового рынка ранние СУБД. В настоящее время основным предметом критики реляционных СУБД является не их недостаточная эффективность, а присущая этим системам некоторая ограниченность (прямое следствие простоты) при использовании в так называемых нетрадиционных областях применения (наиболее распространенными примерами являются системы автоматизации проектирования), в которых требуются предельно сложные структуры данных. Еще одним часто отмечаемым недостатком реляционных баз данных является невозможность адекватного отражения семантики предметной области. Другими словами, возможности представления знаний о семантической специфике предметной области в реляционных системах очень ограничены. Современные исследования в области постреляционных систем (которые мы не будем затрагивать в этом цикле) главным образом посвящены именно устранению этих недостатков.

Глава 4. Реляционный подход к организации баз данных, или Теория и Интуиция

В этой лекции мы вводим на сравнительно неформальном уровне основные понятия реляционных баз данных, а также определяем существо реляционной модели данных. Основной целью лекции является демонстрация простоты и возможности интуитивной интерпретации этих понятий. В дальнейших лекциях будут приводиться более формальные определения, на которых основывается математическая теория реляционных баз данных.

4.1. Базовые понятия реляционных баз данных

Основными понятиями реляционных баз данных являются:

  • тип данных,
  • домен,
  • атрибут,
  • кортеж,
  • первичный ключ и
  • отношение.

Для начала покажем смысл этих понятий на примере отношения СОТРУДНИКИ,

содержащего некоторую информацию о сотрудниках некоторой организации (Рис. 4.1):

Picture 1

Рисунок 4.1.
Иерархия понятий в базе данных СОТРУДНИКИ

4.1.1 Тип данных

Понятие тип данных в реляционной модели данных полностью адекватно понятию типа данных в языках программирования. Обычно в современных реляционных БД допускается хранение символьных, числовых данных, битовых строк, специализированных числовых данных (таких как "деньги"), а также специальных "темпоральных" данных (дата, время, временной интервал). Достаточно активно развивается подход к расширению возможностей реляционных систем абстрактными типами данных (соответствующими возможностями обладают, например, системы семейства Ingres/Postgres). В нашем примере мы имеем дело с данными трех типов: строки символов, целые числа и "деньги".

4.1.2 Домен

Понятие домена более специфично для баз данных, хотя и имеет некоторые аналогии с подтипами в некоторых языках программирования. В самом общем виде домен определяется заданием некоторого базового типа данных, к которому относятся элементы домена, и произвольного логического выражения, применяемого к элементу типа данных. Если вычисление этого логического выражения дает результат "истина", то элемент данных является элементом домена. Наиболее правильной интутивной трактовкой понятия домена является понимание домена как допустимого потенциального множества значений данного типа. Например, домен "Имена" в нашем примере определен на базовом типе строк символов, но в число его значений могут входить только те строки, которые могут изображать имя (в частности, такие строки не могут начинаться с мягкого знака). Следует отметить также семантическую нагрузку понятия домена: данные считаются сравнимыми только в том случае, когда они относятся к одному домену. В нашем примере значения доменов "Номера пропусков" и "Номера групп" относятся к типу целых чисел, но не являются сравнимыми. Заметим, что в большинстве реляционных СУБД понятие домена не используется, хотя в Oracle V.7 оно уже поддерживается.

4.1.3 Схема отношения, схема базы данных

Схема отношения - это именованное множество пар имя атрибута, имя домена (или типа, если понятие домена не поддерживается). Степень, или "арность" схемы отношения,- мощность этого множества. Степень отношения СОТРУДНИКИ равна четырем, то есть оно является 4-арным. Если все атрибуты одного отношения определены на разных доменах, осмысленно использовать для именования атрибутов имена соответствующих доменов (не забывая, конечно, о том, что это является всего лишь удобным способом именования и не устраняет различия между понятиями домена и атрибута). Схема БД (в структурном смысле) - это набор именованных схем отношений.

4.1.4 Кортеж, отношение

Кортеж, соответствующий данной схеме отношения, - это множество пар имя атрибута, значение, которое содержит одно вхождение каждого имени атрибута, принадлежащего схеме отношения. "Значение" является допустимым значением домена данного атрибута (или типа данных, если понятие домена не поддерживается). Тем самым, степень, или "арность" кортежа, т.е. число элементов в нем, совпадает с "арностью" соответствующей схемы отношения. Попросту говоря, кортеж - это набор именованных значений заданного типа. Отношение - это множество кортежей, соответствующих одной схеме отношения. Иногда, чтобы не путаться, говорят "отношение-схема" и "отношение-экземпляр", иногда схему отношения называют заголовком отношения, а отношение как набор кортежей - телом отношения. На самом деле, понятие схемы отношения ближе всего к понятию структурного типа данных в языках программирования. Было бы вполне логично разрешать отдельно определять схему отношения, а затем - одно или несколько отношений с данной схемой. Однако в реляционных базах данных это не принято. Имя схемы отношения в таких базах данных всегда совпадает с именем соответствующего отношения-экземпляра. В классических реляционных базах данных после определения схемы базы данных изменяются только отношения-экземпляры. В них могут появляться новые и удаляться или модифицироваться существующие кортежи. Однако во многих реализациях допускается и изменение схемы базы данных: определение новых и изменение существующих схем отношения. Это принято называть эволюцией схемы базы данных. Обычным житейским представлением отношения является таблица, заголовком которой является схема отношения, а строками - кортежи отношения-экземпляра; в этом случае имена атрибутов именуют столбцы этой таблицы. Поэтому иногда говорят "столбец таблицы", имея в виду "атрибут отношения". Когда мы перейдем к рассмотрению практических вопросов организации реляционных баз данных и средств управления, мы будем использовать эту житейскую терминологию. Этой терминологии придерживаются в большинстве коммерческих реляционных СУБД. Реляционная база данных - это набор отношений, имена которых совпадают с именами схем отношений в схеме БД. Как видно, основные структурные понятия реляционной модели данных (если не считать понятия домена) имеют очень простую интуитивную интерпретацию, хотя в теории реляционных БД все они определяются абсолютно формально и точно.

4.2. Фундаментальные свойства отношений

Остановимся теперь на некоторых важных свойствах отношений, которые следуют из приведенных ранее определений.

4.2.1 Отсутствие кортежей-дубликатов

То свойство, что отношения не содержат кортежей-дубликатов, следует из определения отношения как множества кортежей. В классической теории множеств, по определению, каждое множество состоит из различных элементов. Из этого свойства вытекает наличие у каждого отношения так называемого первичного ключа - набора атрибутов, значения которых однозначно определяют кортеж отношения. Для каждого отношения, по крайней мере, полный набор его атрибутов обладает этим свойством. Однако при формальном определении первичного ключа требуется обеспечение его "минимальности", т.е. в набор атрибутов первичного ключа не должны входить такие атрибуты, которые можно отбросить без ущерба для основного свойства,- однозначно определять кортеж. Понятие первичного ключа является исключительно важным в связи с понятием целостности баз данных. Забегая вперед, заметим, что во многих практических реализациях РСУБД допускается нарушение свойства уникальности кортежей для промежуточных отношений, порождаемых неявно при выполнении запросов. Такие отношения являются не множествами, а мультимножествами, что в ряде случаев позволяет добиться определенных преимуществ, но иногда приводит к серьезным проблемам.

4.2.2 Отсутствие упорядоченности кортежей

Свойство отсутствия упорядоченности кортежей отношения также является следствием определения отношения-экземпляра как множества кортежей. Отсутствие требования к поддержанию порядка на множестве кортежей отношения дает дополнительную гибкость СУБД при хранении баз данных во внешней памяти и при выполнении запросов к базе данных. Это не противоречит тому, что при формулировании запроса к БД, например, на языке SQL можно потребовать сортировки результирующей таблицы в соответствии со значениями некоторых столбцов. Такой результат, это вообще говоря, не отношение, а некоторый упорядоченный список кортежей.

4.2.3 Отсутствие упорядоченности атрибутов

Атрибуты отношений не упорядочены, поскольку по определению схема отношения есть множество пар имя атрибута, имя домена. Для ссылки на значение атрибута в кортеже отношения всегда используется имя атрибута. Это свойство теоретически позволяет, например, модифицировать схемы существующих отношений не только путем добавления новых атрибутов, но и путем удаления существующих атрибутов. Однако в большинстве существующих систем такая возможность не допускается, и хотя упорядоченность набора атрибутов отношения явно не требуется, часто в качестве неявного порядка атрибутов используется их порядок в линейной форме определения схемы отношения.

4.2.4 Атомарность значений атрибутов

Значения всех атрибутов являются атомарными. Это следует из определения домена как потенциального множества значений простого типа данных, т.е. среди значений домена не могут содержаться множества значений (отношения). Принято говорить, что в реляционных базах данных допускаются только нормализованные отношения или отношения, представленные в первой нормальной форме. Потенциальный пример ненормализованного отношения показан на Рис. 4.2.1.

Picture 2

Рисунок 4.2.1.
Отношение ОТДЕЛЫ в ненормализованной форме

Picture 3

Рисунок 4.2.2.
Нормализованное отношение СОТРУДНИКИ

Можно сказать, что здесь мы имеем бинарное отношение, значениями атрибута ОТДЕЛЫ которого являются отношения. Заметим, что исходное отношение СОТРУДНИКИ является нормализованным вариантом отношения ОТДЕЛЫ (см. Рис. 4.2.2). Нормализованные отношения составляют основу классического реляционного подхода к организации баз данных. Они обладают некоторыми ограничениями (не любую информацию удобно представлять в виде плоских таблиц), но существенно упрощают манипулирование данными. Рассмотрим, например, два идентичных оператора занесения кортежа:

Зачислить сотрудника Кузнецова (пропуск номер 3000, зарплата 115,000) в отдел номер 320 и Зачислить сотрудника Кузнецова (пропуск номер 3000, зарплата 115,000) в отдел номер 310. Если информация о сотрудниках представлена в виде отношения СОТРУДНИКИ, оба оператора будут выполняться одинаково (вставить кортеж в отношение СОТРУДНИКИ). Если же работать с ненормализованным отношением ОТДЕЛЫ, то первый оператор выразится в занесение кортежа, а второй - в добавление информации о Кузнецове в множественное значение атрибута ОТДЕЛ кортежа с первичным ключом 310.

4.3. Реляционная модель данных

Когда в предыдущих разделах мы говорили об основных понятиях реляционных баз данных, мы не опирались на какую-либо конкретную реализацию. Эти рассуждения в равной степени относились к любой системе, при построении которой использовался реляционный подход. Другими словами, мы использовали понятия так называемой реляционной модели данных. Модель данных описывает некоторый набор родовых понятий и признаков, которыми должны обладать все конкретные СУБД и управляемые ими базы данных, если они основываются на этой модели. Наличие модели данных позволяет сравнивать конкретные реализации, используя один общий язык. Хотя понятие модели данных является общим, и можно говорить о иерархической, сетевой, некоторой семантической и т.д. моделях данных, нужно отметить, что это понятие было введено в обиход применительно к реляционным системам и наиболее эффективно используется именно в этом контексте. Попытки прямолинейного применения аналогичных моделей к дореляционным организациям показывают, что реляционная модель слишком "велика" для них, а для постреляционных организаций она оказывается "мала".

4.3.1 Общая характеристика

Наиболее распространенная трактовка реляционной модели данных, по-видимому, принадлежит Дейту, который воспроизводит ее (с различными уточнениями) практически во всех своих книгах. Согласно Дейту, реляционная модель состоит из трех частей, описывающих разные аспекты реляционного подхода: структурной части, манипуляционной части и целостной части. В структурной части модели фиксируется, что единственной структурой данных, используемой в реляционных БД, является нормализованное n-арное отношение. По сути дела, в предыдущих двух разделах этой лекции мы рассматривали именно понятия и свойства структурной составляющей реляционной модели. В манипуляционной части модели утверждаются два фундаментальных механизма манипулирования реляционными БД - реляционная алгебра и реляционное исчисление. Первый механизм базируется в основном на классической теории множеств (с некоторыми уточнениями), а второй - на классическом логическом аппарате исчисления предикатов первого порядка. Далее мы рассмотрим эти механизмы более подробно, а пока лишь заметим, что основной функцией манипуляционной части реляционной модели является обеспечение меры реляционности любого конкретного языка реляционных БД: язык называется реляционным, если он обладает не меньшей выразительностью и мощностью, чем реляционная алгебра или реляционное исчисление.

4.3.2 Целостность сущности и ссылок

Наконец, в целостной части реляционной модели данных фиксируются два базовых требования целостности, которые должны поддерживаться в любой реляционной СУБД. Первое требование называется требованием целостности сущностей. Объекту или сущности реального мира в реляционных БД соответствуют кортежи отношений. Конкретно требование состоит в том, что любой кортеж любого отношения должен быть отличим от любого другого кортежа этого отношения, т.е. другими словами, любое отношение должно обладать первичным ключом. Как мы видели в предыдущем разделе, это требование автоматически удовлетворяется, если в системе не нарушаются базовые свойства отношений. Второе требование называется требованием целостности по ссылкам и является несколько более сложным. Очевидно, что при соблюдении нормализованности отношений сложные сущности реального мира представляются в реляционной БД в виде нескольких кортежей нескольких отношений. Например, представим, что нам требуется представить в реляционной базе данных сущность ОТДЕЛ с атрибутами ОТД_НОМЕР (номер отдела), ОТД_КОЛ (количество сотрудников) и ОТД_СОТР (набор сотрудников отдела). Для каждого сотрудника нужно хранить СОТР_НОМЕР (номер сотрудника), СОТР_ИМЯ (имя сотрудника) и СОТР_ЗАРП (заработная плата сотрудника). Как мы вскоре увидим, при правильном проектировании соответствующей БД в ней появятся два отношения: ОТДЕЛЫ (ОТД_НОМЕР, ОТД_КОЛ) (первичный ключ - ОТД_НОМЕР) и СОТРУДНИКИ (СОТР_НОМЕР, СОТР_ИМЯ, СОТР_ЗАРП, СОТР_ОТД_НОМ) (первичный ключ - СОТР_НОМЕР). Как видно, атрибут СОТР_ОТД_НОМ появляется в отношении СОТРУДНИКИ не потому, что номер отдела является собственным свойством сотрудника, а лишь для того, чтобы иметь возможность восстановить при необходимости полную сущность ОТДЕЛ. Значение атрибута СОТР_ОТД_НОМ в любом кортеже отношения СОТРУДНИКИ должно соответствовать значению атрибута ОТД_НОМ в некотором кортеже отношения ОТДЕЛЫ. Атрибут такого рода называется внешним ключом, поскольку его значения однозначно характеризуют сущности, представленные кортежами некоторого другого отношения (т.е. задают значения их первичного ключа). Говорят, что отношение, в котором определен внешний ключ, ссылается на соответствующее отношение, в котором такой же атрибут является первичным ключом. Требование целостности по ссылкам, или требование внешнего ключа, состоит в том, что для каждого значения внешнего ключа, появляющего в ссылающемся отношении, в отношении, на которое ведет ссылка, должен найтись кортеж с таким же значением первичного ключа, либо значение внешнего ключа должно быть полностью неопределенным (т.е. ни на что не указывать). Для нашего примера это означает, что если для сотрудника указан номер отдела, то этот отдел должен существовать. Ограничения целостности сущности и по ссылкам должны поддерживаться СУБД. Для соблюдения целостности сущности достаточно гарантировать отсутствие в любом отношении кортежей с одним и тем же значением первичного ключа. С целостностью по ссылкам дела обстоят несколько более сложно. Понятно, что при обновлении ссылающегося отношения (вставке новых кортежей или модификации значения внешнего ключа в существующих кортежах) достаточно следить за тем, чтобы не появлялись некорректные значения внешнего ключа. Но как быть при удалении кортежа из отношения, на которое ведет ссылка? Здесь существуют три подхода, каждый из которых поддерживает целостность по ссылкам. Первый подход заключается в том, что запрещается производить удаление кортежа, на который существуют ссылки (т.е. сначала нужно либо удалить ссылающиеся кортежи, либо соответствующим образом изменить значения их внешнего ключа). При втором подходе при удалении кортежа, на который имеются ссылки, во всех ссылающихся кортежах значение внешнего ключа автоматически становится неопределенным. Наконец, третий подход (каскадное удаление) состоит в том, что при удалении кортежа из отношения, на которое ведет ссылка, из ссылающегося отношения автоматически удаляются все ссылающиеся кортежи. В развитых реляционных СУБД обычно можно выбрать способ поддержания целостности по ссылкам для каждой отдельной ситуации определения внешнего ключа. Конечно, для принятия такого решения необходимо анализировать требования конкретной прикладной области.

Глава 5. Базисные средства манипулирования реляционными данными, или На чем базируются языки запросов

В предыдущей лекции мы говорили про три составляющие реляционной модели данных. Две из них - структурную и целостную составляющую мы рассмотрели более или менее подробно, а манипуляционной части реляционной модели данных посвящается эта лекция. Как мы отмечали в предыдущей лекции, в манипуляционной составляющей определяются два базовых механизма манипулирования реляционными данными: основанная на теории множеств реляционная алгебра и базирующееся на математической логике (точнее, на исчислении предикатов первого порядка) реляционное исчисление. В свою очередь, обычно рассматриваются два вида реляционного исчисления - исчисление доменов и исчисление предикатов. Все эти механизмы обладают одним важным свойством: они замкнуты относительно понятия отношения. Это означает, что выражения реляционной алгебры и формулы реляционного исчисления определяются над отношениями реляционных БД и результатами вычислений также являются отношения. Как следствие, любое выражение или формула могут интерпретироваться как отношение, что позволяет использовать их в других выражениях или формулах. Как мы увидим, алгебра и исчисление обладают большой выразительной мощностью: очень сложные запросы к базе данных могут быть выражены с помощью одного выражения реляционной алгебры или одной формулы реляционного исчисления. По этой причине именно эти механизмы включены в реляционную модель данных. Конкретный язык манипулирования реляционными БД называется реляционно полным, если любой запрос, выражаемый с помощью одного выражения реляционной алгебры или одной формулы реляционного исчисления, может быть выражен с помощью одного оператора этого языка. Известно (и мы не будем здесь приводить доказательство этого), что механизмы реляционной алгебры и реляционного исчисления эквивалентны, т.е. для любого допустимого выражения реляционной алгебры можно построить эквивалентную (т.е. производящую такой же результат) формулу реляционного исчисления и наоборот. Почему же в реляционной модели данных присутствуют оба эти механизма? Дело в том, что они различаются уровнем процедурности. Выражения реляционной алгебры строятся на основе алгебраических операций (высокого уровня), и подобно тому, как интерпретируются арифметические и логические выражения, выражение реляционной алгебры также имеет процедурную интерпретацию. Другими словами, запрос, представленный на языке реляционной алгебры, может быть вычислен на основе вычисления элементарных алгебраических операций с учетом их старшинства и возможного наличия скобок. Для формулы реляционного исчисления подобная интерпретация, вообще говоря, отсутствует. Формула только устанавливает условия, которым должны удовлетворять кортежи результирующего отношения. Поэтому языки реляционного исчисления являются более непроцедурными или декларативными. Поскольку механизмы реляционной алгебры и реляционного исчисления эквивалентны, то в кокретной ситуации для проверки степени реляционности некоторого языка БД можно пользоваться любым из этих механизмов. Заметим, что крайне редко алгебра или исчисление принимаются в качестве полной основы какого-либо языка БД. Обычно (как, например, в случае языка SQL) язык основывается на некоторой смеси алгебраических и логических конструкций. Тем не менее, знание алгебраических и логических основ языков баз данных часто бывает полезно на практике. В нашем изложении мы в основном следуем подходу Дейта, примененному (хотя и не изобретенному) им в книге "Введение в системы баз данных". Для экономии времени и места мы не будем вводить каких-либо строгих синтаксических конструкций, а в основном ограничимся рассмотрением материала на содержательном уровне.

5.1. Реляционная алгебра

Основная идея реляционной алгебры состоит в том, что коль скоро отношения являются множествами, то средства манипулирования отношениями могут базироваться на традиционных теоретико-множественных операциях, дополненных некоторыми специальными операциями, специфичными для баз данных. Существует много подходов к определению реляционной алгебры, которые различаются набором операций и способами их интерпретации, но, в принципе, они более или менее равносильны. Мы опишем немного расширенный начальный вариант алгебры, который был предложен Коддом. В этом варианте набор основных алгебраических операций состоит из восьми операций, которые делятся на два класса,- теоретико-множественные операции и специальные реляционные операции. В состав теоретико-множественных операций входят операции:

  • объединения отношений;
  • пересечения отношений;
  • взятия разности отношений;
  • Декартова произведения отношений.

Специальные реляционные операции включают:

  • ограничение отношения;
  • проекцию отношения;
  • соединение отношений;
  • деление отношений.

Кроме того, в состав алгебры включается операция присваивания, позволяющая сохранить в базе данных результаты вычисления алгебраических выражений, и операция переименования атрибутов, дающая возможность корректно сформировать заголовок (схему) результирующего отношения.

5.1.1 Общая интерпретация реляционных операций

Если не вдаваться в некоторые тонкости, которые мы рассмотрим в следующих подразделах, то почти все операции предложенного выше набора обладают очевидной и простой интерпретацией:

  • При выполнении операции объединения двух отношений производится отношение, включающее все кортежи, входящие хотя бы в одно из отношений-операндов.
  • Операция пересечения двух отношений производит отношение, включающее все кортежи, входящие в оба отношения-операнды.
  • Отношение, являющееся разностью двух отношений, включает все кортежи, входящие в отношение - первый операнд; такие, что ни один из них не входит в отношение, являющееся вторым операндом.
  • При выполнении прямого произведения двух отношений производится отношение, кортежи которого являются конкатенацией (сцеплением) кортежей первого и второго операндов.
  • Результатом ограничения отношения по некоторому условию является отношение, включающее кортежи отношения-операнда, удовлетворяющее этому условию.
  • При выполнении проекции отношения на заданный набор его атрибутов производится отношение, кортежи которого производятся путем взятия соответствующих значений из заданных столбцов кортежей отношения-операнда.
  • При соединении двух отношений по некоторому условию образуется результирующее отношение, кортежи которого являются конкатенацией кортежей первого и второго отношений и удовлетворяют этому условию.
  • У операции реляционного деления два операнда - бинарное и унарное отношения. Результирующее отношение состоит из одноатрибутных кортежей, включающих значения первого атрибута кортежей первого операнда таких, что множество значений второго атрибута (при фиксированном значении первого атрибута) совпадает со множеством значений второго операнда.
  • Операция переименования производит отношение, тело которого совпадает с телом операнда, но имена атрибутов изменены.
  • Операция присваивания позволяет сохранить результат вычисления реляционного выражения в существующем отношении БД. Поскольку результатом любой реляционной операции (кроме операции присваивания) является некоторое отношение, можно образовывать реляционные выражения, в которых вместо отношения-операнда некоторой реляционной операции находится вложенное реляционное выражение.

5.1.2 Замкнутость реляционной алгебры и операция переименования

Как мы говорили в предыдущей лекции, каждое отношение характеризуется схемой (или заголовком) и набором кортежей (или телом). Поэтому, если действительно желать иметь алгебру, операции которой замкнуты относительно понятия отношения, то каждая операция должна производить отношение в полном смысле, т.е. оно должно обладать и телом, и заголовком. Только в этом случае будет действительно возможно строить вложенные выражения. Заголовок отношения представляет собой множество пар <имя-атрибута, имя-домена>. Если посмотреть на общий обзор реляционных операций, приведенный в предыдущем разделе, то видно, что домены атрибутов результирующего отношения однозначно определяются доменами отношений-результатов. Однако с именами атрибутов результата не всегда бывает все так просто. Например, представим себе, что у отношений-операндов операции прямого произведения имеются одноименные атрибуты с одинаковыми доменами. Каким должен был бы быть заголовок результирующего отношения? Поскольку заголовок - это множество, в нем не должны содержаться одинаковые элементы. Но и потерять атрибут в результате недопустимо. А это значит, что в этом случае вообще невозможно корректно выполнить операцию прямого произведения. Аналогичные проблемы могут возникать и в случаях других двуместных операций. Для их разрешения в состав операций реляционной алгебры вводится операция переименования. Ее следует применять в любом случае, когда возникает конфликт именования атрибутов в отношениях,- операндах одной реляционной операции. Тогда к одному из операндов сначала применяется операция переименования, а затем основная операция выполняется уже безо всяких проблем. В дальнейшем изложении мы будем предполагать применение операции переименования во всех конфликтных случаях.

5.1.3 Особенности теоретико-множественных операций реляционной алгебры

Хотя в основе теоретико-множественной части реляционной алгебры лежит классическая теория множеств, соответствующие операции реляционной алгебры обладают некоторыми особенностями. Начнем с операции объединения (все, что будет говориться по поводу объединения, переносится на операции пересечения и взятия разности). Смысл операции объединения в реляционной алгебре в целом остается теоретико-множественным. Но если в теории множеств операция объединения осмысленна для любых двух множеств-операндов, то в случае реляционной алгебры результатом операции объединения должно являться отношение. Если допустить в реляционной алгебре возможность теоретико-множественного объединения произвольных двух отношений (с разными схемами), то, конечно, результатом операции будет множество, но это множество, состоящее из разнотипных кортежей, т.е. оно не является отношением. Если исходить из требования замкнутости реляционной алгебры относительно понятия отношения, то такая операция объединения является бессмысленной. Все эти соображения приводят к появлению понятия совместимости отношений по объединению: два отношения совместимы по объединению в том и только в том случае, когда обладают одинаковыми заголовками. Более точно, это означает, что в заголовках обоих отношений содержится один и тот же набор имен атрибутов, и одноименные атрибуты определены на одном и том же домене. Если два отношения совместимы по объединению, то при обычном выполнении над ними операций объединения, пересечения и взятия разности результатом операции является отношение с корректно определенным заголовком, совпадающим с заголовком каждого из отношений-операндов. Напомним, что если два отношения "почти" совместимы по объединению, т.е. совместимы во всем, кроме имен атрибутов, то до выполнения операции типа соединения эти отношения можно сделать полностью совместимыми по объединению путем применения операции переименования. Заметим, что включение в состав операций реляционной алгебры трех операций объединения, пересечения и взятия разности является очевидно избыточным, поскольку известно, что любая из этих операций выражается через две других. Тем не менее, Кодд в свое время решил включить все три операции, исходя из интуитивных потребностей потенциального пользователя системы реляционых БД, далекого от математики. Другие проблемы связаны с операцией взятия Декартова (или прямого) произведения двух отношений. В теории множеств прямое произведение может быть получено для любых двух множеств, и элементами результирующего множества являются пары, составленные из элементов первого и второго множеств. Поскольку отношения являются множествами, то и для любых двух отношений возможно получение прямого произведения. Но результат не будет отношением! Элементами результата будут являться не кортежи, а пары кортежей. Поэтому в реляционной алгебре используется специализированная форма операции взятия прямого произведения - расширенное прямое произведение отношений. При взятии расширенного прямого произведения двух отношений элементом результирующего отношения является кортеж, являющийся конкатенацией (или слиянием) одного кортежа первого отношения и одного кортежа второго отношения. Но теперь возникает второй вопрос - как получить корректно сформированный заголовок отношения-результата? Очевидно, что проблемой может быть именование атрибутов результирующего отношения, если отношения-операнды обладают одноименными атрибутами. Эти соображения приводят к появлению понятия совместимости по взятию расширенного прямого произведения. Два отношения совместимы по взятию прямого произведения в том и только в том случае, если множества имен атрибутов этих отношений не пересекаются. Любые два отношения могут быть сделаны совместимыми по взятию прямого произведения путем применения операции переименования к одному из этих отношений. Следует заметить, что операция взятия прямого произведения не является слишком осмысленной на практике. Во-первых, мощность ее результата очень велика даже при допустимых мощностях операндов, а во-вторых, результат операции не более информативен, чем взятые в совокупности операнды. Как мы увидим немного ниже, основной смысл включения операции расширенного прямого произведения в состав реляционной алгебры состоит в том, что на ее основе определяется действительно полезная операция соединения. По поводу теоретико-множественных операций реляционной алгебры следует еще заметить, что все четыре операции являются ассоциативными. Т.е., если обозначить через OP любую из четырех операций, то (A OP B) OP C = A (B OP C), и следовательно, без введения двусмысленности можно писать A OP B OP C (A, B и C - отношения, обладающие свойствами, требуемыми для корректного выполнения соответствующей операции). Все операции, кроме взятия разности, являются коммутативными, т.е. A OP B = B OP A.

5.1.4 Специальные реляционные операции

В этом подразделе мы несколько подробнее рассмотрим специальные реляционные операции реляционной алгебры: ограничение, проекция, соединение и деление. Операция ограничения требует наличия двух операндов: ограничиваемого отношения и простого условия ограничения. Простое условие ограничения может иметь либо вид (a comp-op b), где а и b - имена атрибутов ограничиваемого отношения, для которых осмысленна операция сравнения comp-op, либо вид (a comp-op const), где a - имя атрибута ограничиваемого отношения, а const - литерально заданная константа. В результате выполнения операции ограничения производится отношение, заголовок которого совпадает с заголовком отношения-операнда, а в тело входят те кортежи отношения-операнда, для которых значением условия ограничения является true. Пусть UNION обозначает операцию объединения, INTERSECT - операцию пересечения, а MINUS - операцию взятия разности. Для обозначения операции ограничения будем использовать конструкцию A WHERE comp, где A - ограничиваемое отношение, а comp - простое условие сравнения. Пусть comp1 и comp2 - два простых условия ограничения. Тогда по определению:

  • A WHERE comp1 AND comp2 обозначает то же самое, что и (A WHERE comp1) INTERSECT (A WHERE comp2)
  • A WHERE comp1 OR comp2 обозначает то же самое, что и (A WHERE comp1) UNION (A WHERE comp2)
  • A WHERE NOT comp1 обозначает то же самое, что и A MINUS (A WHERE comp1)

С использованием этих определений можно использовать операции ограничения, в которых условием ограничения является произвольное булевское выражение, составленное из простых условий с использованием логических связок AND, OR и AND и скобок. На интуитивном уровне операцию ограничения лучше всего представлять как взятие некоторой "горизонтальной" вырезки из отношения-операнда.

Операция взятия проекции

Операция взятия проекции также требует наличия двух операндов - проецируемого отношения A и списка имен атрибутов, входящих в заголовок отношения A. Результатом проекции отношения A по списку атрибутов a1, a2, ..., an является отношение, с заголовком, определяемым множеством атрибутов a1, a2, ..., an, и с телом, состоящим из кортежей вида 1:v1, a2:v2, ..., an:vn> таких, что в отношении A имеется кортеж, атрибут a1 которого имеет значение v1, атрибут a2 имеет значение v2, ..., атрибут an имеет значение vn. Тем самым, при выполнении операции проекции выделяется "вертикальная" вырезка отношения-операнда с естественным уничтожением потенциально возникающих кортежей-дубликатов.

Операция соединения отношений

Общая операция соединения (называемая также соединением по условию) требует наличия двух операндов - соединяемых отношений и третьего операнда - простого условия. Пусть соединяются отношения A и B. Как и в случае операции ограничения, условие соединения comp имеет вид либо (a comp-op b), либо (a comp-op const), где a и b - имена атрибутов отношений A и B, const - литерально заданная константа, а comp-op - допустимая в данном контексте операция сравнения. Тогда по определению результатом операции соединения является отношение, получаемое путем выполнения операции ограничения по условию comp прямого произведения отношений A и B. Если тщательно осмыслить это определение, то станет ясно, что в общем случае применение условия соединения существенно уменьшит мощность результата промежуточного прямого произведения отношений-операндов только в том случае, когда условие соединения имеет вид (a comp-op b), где a и b - имена атрибутов разных отношений-операндов. Поэтому на практике обычно считают реальными операциями соединения именно те операции, которые основываются на условии соединения приведенного вида. Хотя операция соединения в нашей интерпретации не является примитивной (поскольку она определяется с использованием прямого произведения и проекции), в силу особой практической важности она включается в базовый набор операций реляционной алгебры. Заметим также, что в практических реализациях соединение обычно не выполняется именно как ограничение прямого произведения. Имеются более эффективные алгоритмы, гарантирующие получение такого же результата. Имеются важные частные случаи соединения - эквисоединение и простое, но важное расширение операции эквисоединения - естественное соединение. Операция соединения называется операцией эквисоединия, если условие соединения имеет вид (a = b), где a и b - атрибуты разных операндов соединения. Этот случай важен потому, что (a) он часто встречается на практике, и (b) для него существуют эффективные алгоритмы реализации. Операция естественного соединения применяется к паре отношения A и B, обладающих (возможно составным) общим атрибутом c (т.е. атрибутом с одним и тем же именем и определенным на одном и том же домене). Пусть ab обозначает объединение заголовков отношений A и B. Тогда естественное соединение A и B - это спроецированный на ab результат эквисоедиения A и B по A.c и B.c. Если вспомнить введенное нами в конце предыдущей главы определение внешнего ключа отношения, то должно стать понятно, что основной смысл операции естественного соединения - возможность восстановления сложной сущности, декомопозированной по причине требования первой нормальной формы. Операция естественного соединения не включается прямо в состав набора операций реляционной алгебры, но имеет очень важное практическое значение.

Операция деления отношений

Эта операция является наименее очевидной из всех операций реляционной алгебры и поэтому нуждается в более подробном объяснении. Пусть заданы два отношения - A с заголовком {a1, a2, ..., an, b1, b2, ..., bm} и B с заголовком {b1, b2, ..., bm}. Будем считать, что атрибут bi отношения A и атрибут bi отношения B не только обладают одним и тем же именем, но и определены на одном и том же домене. Назовем множество атрибутов {aj} составным атрибутом a, а множество атрибутов {bj} - составным атрибутом b. После этого будем говорить о реляционном делении бинарного отношения A(a,b) на унарное отношение B(b). Результатом деления A на B является унарное отношение C(a), состоящее из кортежей v таких, что в отношении A имеются кортежи такие, что множество значений {w} включает множество значений атрибута b в отношении B. Предположим, что в базе данных сотрудников поддерживаются два отношения: СОТРУДНИКИ (ИМЯ, ОТД_НОМЕР) и ИМЕНА (ИМЯ), причем унарное отношение ИМЕНА содержит все фамилии, которыми обладают сотрудники организации. Тогда после выполнения операции реляционного деления отношения СОТРУДНИКИ на отношение ИМЕНА будет получено унарное отношение, содержащее номера отделов, сотрудники которых обладают всеми возможными в этой организации именами.

5.2. Реляционное исчисление

Предположим, что мы работаем с базой данных, обладающей схемой СОТРУДНИКИ (СОТР_НОМ, СОТР_ИМЯ, СОТР_ЗАРП, ОТД_НОМ) и ОТДЕЛЫ (ОТД_НОМ, ОТД_КОЛ, ОТД_НАЧ), и хотим узнать имена и номера сотрудников, являющихся начальниками отделов с количеством сотрудников больше 50. Если бы для формулировки такого запроса использовалась реляционная алгебра, то мы получили бы алгебраическое выражение, которое читалось бы, например, следующим образом:

  • выполнить соединение отношений СОТРУДНИКИ и ОТДЕЛЫ по условию СОТР_НОМ = ОТД_НАЧ;
  • ограничить полученное отношение по условию ОТД_КОЛ > 50;
  • спроецировать результат предыдущей операции на атрибут СОТР_ИМЯ, СОТР_НОМ.

Мы четко сформулировали последовательность шагов выполнения запроса, каждый из которых соответствует одной реляционной операции. Если же сформулировать тот же запрос с использованием реляционного исчисления, которому посвящается этот раздел, то мы получим формулу, которую можно было бы прочитать, например, следующим образом: Выдать СОТР_ИМЯ и СОТР_НОМ для сотрудников таких, что существует отдел с таким же значением ОТД_НАЧ и значением ОТД_КОЛ большим 50. Во второй формулировке мы указываем лишь характеристики результирующего отношения, но ничего не говорим о способе его формирования. В этом случае система должна сама решить, какие операции и в каком порядке нужно выполнить над отношениями СОТРУДНИКИ и ОТДЕЛЫ. Обычно говорят, что алгебраическая формулировка является процедурной, т.е. задающей правила выполнения запроса, а логическая - описательной (или декларативной), поскольку она всего лишь описывает свойства желаемого результата. Как мы указывали в начале лекции, на самом деле эти два механизма эквивалентны и существуют не очень сложные правила преобразования одного формализма в другой.

5.2.1 Кортежные переменные и правильно построенные формулы

Реляционное исчисление является прикладной ветвью формального механизма исчисления предикатов первого порядка. Базисными понятиями исчисления являются понятие переменной с определенной для нее областью допустимых значений и понятие правильно построенной формулы, опирающейся на переменные, предикаты и кванторы. В зависимости от того, что является областью определения переменной, различаются исчисление кортежей и исчисление доменов. В исчислении кортежей областями определения переменных являются отношения базы данных, т.е. допустимым значением каждой переменной является кортеж некоторого отношения. В исчислении доменов областями определения переменных являются домены, на которых определены атрибуты отношений базы данных, т.е. допустимым значением каждой переменной является значение некоторого домена. Мы рассмотрим более подробно исчисление кортежей, а в конце лекции коротко опишем особенности исчисления доменов. В отличие от раздела, посвященного реляционной алгебре, в этом разделе нам не удастся избежать использования некоторого конкретного синтаксиса, который мы, тем не менее, формально определять не будем. Необходимые синтаксические конструкции будут вводиться по мере необходимости. В совокупности, используемый синтаксис близок, но не полностью совпадает с синтаксисом языка баз данных QUEL, который долгое время являлся основным языком СУБД Ingres. Для определения кортежной переменной используется оператор RANGE. Например, для того, чтобы определить переменную СОТРУДНИК, областью определения которой является отношение СОТРУДНИКИ, нужно употребить конструкцию

RANGE СОТРУДНИК IS СОТРУДНИКИ

Как мы уже говорили, из этого определения следует, что в любой момент времени переменная СОТРУДНИК представляет некоторый кортеж отношения СОТРУДНИКИ. При использовании кортежных переменных в формулах можно ссылаться на значение атрибута переменной (это аналогично тому, как, например, при программировании на языке Си можно сослаться на значение поля структурной переменной). Например, для того, чтобы сослаться на значение атрибута СОТР_ИМЯ переменной СОТРУДНИК, нужно употребить конструкцию

СОТРУДНИК.СОТР_ИМЯ.

Правильно построенные формулы (WFF - Well-Formed Formula) служат для выражения условий, накладываемых на кортежные переменные. Основой WFF являются простые сравнения (comparison), представлющие собой операции сравнения скалярных значений (значений атрибутов переменных или литерально заданных констант). Например, конструкция

"СОТРУДНИК.СОТР_НОМ = 140"

является простым сравнением. По определению, простое сравнение является WFF, а WFF, заключенная в круглые скобки, является простым сравнением. Более сложные варианты WFF строятся с помощью логических связок NOT, AND, OR и IF ... THEN. Так, если form - WFF, а comp - простое сравнение, то NOT form, comp AND form, comp OR form и IF comp THEN form являются WFF. Наконец, допускается построение WFF с помощью кванторов. Если form - это WFF, в которой участвует переменная var, то конструкции EXISTS var (form) и FORALL var (form) представляют wff. Переменные, входящие в WFF, могут быть свободными или связанными. Все переменные, входящие в WFF, при построении которой не использовались кванторы, являются свободными. Фактически, это означает, что если для какого-то набора значений свободных кортежных переменных при вычислении WFF получено значение true, то эти значения кортежных переменных могут входить в результирующее отношение. Если же имя переменной использовано сразу после квантора при построении WFF вида EXISTS var (form) или FORALL var (form), то в этой WFF и во всех WFF, построенных с ее участием, var - это связанная переменная. Это означает, что такая переменная не видна за пределами минимальной WFF, связавшей эту переменную. При вычислении значения такой WFF используется не одно значение связанной переменной, а вся ее область определения. Пусть СОТР1 и СОТР2 - две кортежные переменные, определенные на отношении СОТРУДНИКИ. Тогда, WFF

EXISTS СОТР2 (СОТР1.СОТР_ЗАРП > СОТР2.СОТР_ЗАРП)

для текущего кортежа переменной СОТР1 принимает значение true в том и только в том случае, если во всем отношении СОТРУДНИКИ найдется кортеж (связанный с переменной СОТР2) такой, что значение его атрибута СОТР_ЗАРП удовлетворяет внутреннему условию сравнения. WFF

FORALL СОТР2 (СОТР1.СОТР_ЗАРП > СОТР2.СОТР_ЗАРП)

для текущего кортежа переменной СОТР1 принимает значение true в том и только в том случае, если для всех кортежей отношения СОТРУДНИКИ (связанных с переменной СОТР2) значения атрибута СОТР_ЗАРП удовлетворяет условию сравнения. На самом деле, правильнее говорить не о свободных и связанных переменных, а о свободных и связанных вхождениях переменных. Легко видеть, что если переменная var является связанной в WFF form, то во всех WFF, включающих данную, может использоваться имя переменной var, которая может быть свободной или связанной, но в любом случае не имеет никакого отношения к вхождению переменной var в WFF form. Вот пример:

EXISTS СОТР2 (СОТР1.СОТР_ОТД_НОМ = СОТР2.СОТР_ОТД_НОМ) 
   AND FORALL СОТР2 (СОТР1.СОТР_ЗАРП > СОТР2.СОТР_ЗАРП)

Здесь мы имеем два связанных вхождения переменной СОТР2 с совершенно разным смыслом.

5.2.2 Целевые списки и выражения реляционного исчисления

Итак, WFF обеспечивают средства формулировки условия выборки из отношений БД. Чтобы можно было использовать исчисление для реальной работы с БД, требуется еще один компонент, который определяет набор и имена столбцов результирующего отношения. Этот компонент называется целевым списком (target_list). Целевой список строится из целевых элементов, каждый из которых может иметь следующий вид:

  • var.attr, где var - имя свободной переменной соответствующей WFF, а attr - имя атрибута отношения, на котором определена переменная var;
  • var, что эквивалентно наличию подсписка var.attr1, var.attr2, ..., var.attrn, где attr1, attr2, ..., attrn включает имена всех атрибутов определяющего отношения;
  • new_name = var.attr; new_name - новое имя соответствующего атрибута результирующего отношения.

Последний вариант требуется в тех случаях, когда в WFF используются несколько свободных переменных с одинаковой областью определения. Выражением реляционного исчисления кортежей называется конструкция вида target_list WHERE wff. Значением выражения является отношение, тело которого определяется WFF, а набор атрибутов и их имена - целевым списком.

5.2.3 Реляционное исчисление доменов

В исчислении доменов областью определения переменных являются не отношения, а домены. Применительно к базе данных СОТРУДНИКИ-ОТДЕЛЫ можно говорить, например, о доменных переменных ИМЯ (значения - допустимые имена) или НОСОТР (значения - допустимые номера сотрудников). Основным формальным отличием исчисления доменов от исчисления кортежей является наличие дополнительного набора предикатов, позволяющих выражать так называемые условия членства. Если R - это n-арное отношение с атрибутами a1, a2, ..., an, то условие членства имеет вид R (ai1:vi1, ai2:vi2, ..., aim:vim) (m <= n), где vij - это либо литерально задаваемая константа, либо имя доменной переменной. Условие членства принимает значение true в том и только в том случае, если в отношении R существует кортеж, содержащий указанные значения указанных атрибутов. Если vij - константа, то на атрибут aij задается жесткое условие, не зависящее от текущих значений доменных переменных; если же vij - имя доменной переменной, то условие членства может принимать разные значения при разных значениях этой переменной. Во всех остальных отношениях формулы и выражения исчисления доменов выглядят похожими на формулы и выражения исчисления кортежей. В частности, конечно, различаются свободные и связанные вхождения доменных переменных. Для примера сформулируем с использованием исчисления доменов запрос "Выдать номера и имена сотрудников, не получающих минимальную заработную плату" (будем считать для простоты, что мы определили доменные переменные, имена которых совпадают с именами атрибутов отношения СОТРУДНИКИ, а в случае, когда требуется несколько доменных переменных, определенных на одном домене, мы будем добавлять в конце имени цифры):

СОТР_НОМ, СОТР_ИМЯ WHERE EXISTS СОТР_ЗАРП1(СОТРУДНИКИ(СОТР_ЗАРП1) 
                            AND СОТРУДНИКИ(СОТР_НОМ,СОТР_ИМЯ, СОТР_ЗАРП) 
                            AND СОТР_ЗАРП>СОТР_ЗАРП1)

Реляционное исчисление доменов является основой большинства языков запросов, основанных на использовании форм. В частности, на этом исчислении базировался известный язык Query-by-Example, который был первым (и наиболее интересным) языком в семействе языков, основанных на табличных формах.

Продолжение в следующем номере


*) Продолжение. Начало см. СУБД #1, 2.